cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368229 Irregular table of nonnegative integers T(n, k), n >= 0, k = 1..A001316(n), read by rows: the 1's in the binary expansion of n exactly match the nonzero digits in the ternary expansions of the terms in the n-th row.

This page as a plain text file.
%I A368229 #12 Dec 19 2023 12:52:17
%S A368229 0,1,2,3,6,4,5,7,8,9,18,10,11,19,20,12,15,21,24,13,14,16,17,22,23,25,
%T A368229 26,27,54,28,29,55,56,30,33,57,60,31,32,34,35,58,59,61,62,36,45,63,72,
%U A368229 37,38,46,47,64,65,73,74,39,42,48,51,66,69,75,78
%N A368229 Irregular table of nonnegative integers T(n, k), n >= 0, k = 1..A001316(n), read by rows: the 1's in the binary expansion of n exactly match the nonzero digits in the ternary expansions of the terms in the n-th row.
%C A368229 As a flat sequence, this is a permutation of the nonnegative integers (with inverse A368230).
%H A368229 Rémy Sigrist, <a href="/A368229/b368229.txt">Table of n, a(n) for n = 0..6560</a> (rows for n = 0..2^8-1 flattened)
%H A368229 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A368229 T(n, 1) = A005836(n + 1).
%F A368229 T(n, A001316(n)) = A005823(n + 1).
%F A368229 A289831(T(n, k)) = n.
%e A368229 Table T(n, k) begins:
%e A368229     0;
%e A368229     1, 2;
%e A368229     3, 6;
%e A368229     4, 5, 7, 8;
%e A368229     9, 18;
%e A368229     10, 11, 19, 20;
%e A368229     12, 15, 21, 24;
%e A368229     13, 14, 16, 17, 22, 23, 25, 26;
%e A368229     27, 54;
%e A368229     28, 29, 55, 56;
%e A368229     30, 33, 57, 60;
%e A368229     31, 32, 34, 35, 58, 59, 61, 62;
%e A368229     36, 45, 63, 72;
%e A368229     37, 38, 46, 47, 64, 65, 73, 74;
%e A368229     39, 42, 48, 51, 66, 69, 75, 78;
%e A368229     40, 41, 43, 44, 49, 50, 52, 53, 67, 68, 70, 71, 76, 77, 79, 80;
%e A368229     81, 162;
%e A368229     ...
%o A368229 (PARI) row(n) = { my (r = [0], b = binary(n)); for (k = 1, #b, r = [3*v+b[k]|v<-r]; if (b[k], r = concat(r, [v+1|v<-r]););); Set(r); }
%Y A368229 See A368225 for a similar sequence.
%Y A368229 Cf. A001316, A005823, A005836, A289831, A368230 (inverse).
%K A368229 nonn,tabf,base
%O A368229 0,3
%A A368229 _Rémy Sigrist_, Dec 18 2023