cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368231 Lexicographically earliest infinite sequence of distinct positive numbers such that, for n>3, a(n) has a common factor with a(n-1) but not with a(n-2) or n.

Original entry on oeis.org

1, 15, 35, 77, 143, 65, 30, 21, 91, 221, 85, 55, 33, 39, 182, 133, 95, 115, 69, 51, 170, 145, 203, 119, 102, 45, 155, 341, 154, 161, 207, 57, 190, 185, 407, 187, 153, 63, 217, 403, 130, 205, 123, 87, 319, 209, 247, 299, 138, 93, 589, 323, 238, 259, 111, 75, 70, 287, 451, 253, 230, 195, 377
Offset: 1

Views

Author

Scott R. Shannon, Dec 18 2023

Keywords

Comments

This is a variation of the Enots Wolley sequence A336957 and A360519, with an additional restriction that no term a(n) can have a common factor with n. For the sequence to be infinite a(n) must always have a prime factor that is not a factor of a(n-1)*(n+1). See the examples below.
Other than no term being a prime or prime power, see A336957, no term can be an even number with only two distinct prime factors. Clearly no term a(2*k) can be even, so if we assume that a(2*k+1) = 2^n*p^m, with n and m>=1, then a(2*k) must have p as a factor. But as a(2*k+2) must share a factor with a(2*k+1) and cannot have 2 as a factor, it must also have p as a factor. However that is not allowed as a(n) cannot share a factor with a(n-2), so no term can be even with only two distinct prime factors. Therefore the smallest even number is a(7) = 30.

Examples

			a(2) = 15 as 15 is the smallest number that is not a prime power and does not have 2 as a factor.
a(3) = 35 as a(3) is chosen so it shares a factor with a(2) = 3*5 while not having 3 as a factor; it therefore must be a multiple of 5 while not being a power of 5. The smallest number meeting those criteria is 10, but a(2)*(3+1) = 15*4 = 60, and 10 has no prime factor not in 60, so choosing 10 would mean a(4) would not exist. The next smallest available number is 35.
a(4) = 77 as a(4) must be a multiple of 7 but not a power of 7, not a multiple of 2, 3 or 5, while having a prime factor not in 35*(4+1) = 165. The smallest number satisfying these criteria is 77.
		

Crossrefs