cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368234 Number of nondeterministic Dyck excursions of length 2*n.

This page as a plain text file.
%I A368234 #7 Dec 18 2023 08:32:06
%S A368234 1,4,28,224,1888,16320,143040,1264128,11230720,100124672,894785536,
%T A368234 8010072064,71794294784,644079468544,5782109208576,51934915067904,
%U A368234 466666751655936,4194593964294144,37711993926844416,339119962067042304,3049961818869989376,27434013235435536384
%N A368234 Number of nondeterministic Dyck excursions of length 2*n.
%C A368234 In nondeterministic walks (N-walks) the steps are sets and called N-steps. N-walks start at 0 and are concatenations of such N-steps such that all possible extensions are explored in parallel. The nondeterministic Dyck step set is { {-1}, {1}, {-1,1} }. Such an N-walk is called an N-excursion if it contains at least one trajectory that is a classical excursion, i.e., never crosses the x-axis, and starts and ends at 0 (for more details see the de Panafieu-Wallner article).
%H A368234 Élie de Panafieu and Michael Wallner, <a href="https://arxiv.org/abs/2311.03234">Combinatorics of nondeterministic walks</a>, arXiv:2311.03234 [math.CO], 2023.
%F A368234 G.f.: (1-8*x-(1-12*x)*sqrt(1-8*x))/(8*x*(1-9*x)).
%e A368234 The a(1)=4 N-bridges of length 2 are
%e A368234       /         /
%e A368234 /\,  /\,  /\,  /\
%e A368234           \    \/
%e A368234            \    \
%Y A368234 Cf. A151281 (Nondeterministic Dyck meanders), A368164 (Nondeterministic Dyck bridges), A000244 (Nondeterministic Dyck walks).
%K A368234 nonn
%O A368234 0,2
%A A368234 _Michael Wallner_, Dec 18 2023