cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368243 Number of solutions to +- 1^2 +- 2^2 +- 3^2 +- ... +- n^2 = n^2.

This page as a plain text file.
%I A368243 #25 Jan 25 2024 08:03:10
%S A368243 1,1,0,0,0,0,0,0,2,3,0,0,5,15,0,0,127,184,0,0,819,1382,0,0,9441,18176,
%T A368243 0,0,96562,172371,0,0,1192142,2252342,0,0,13869696,25741462,0,0,
%U A368243 177056022,334176492,0,0,2207693292,4182801839,0,0,28966597122,55125154468
%N A368243 Number of solutions to +- 1^2 +- 2^2 +- 3^2 +- ... +- n^2 = n^2.
%F A368243 a(n) = [x^(n^2)] Product_{k=1..n} (x^(k^2) + 1/x^(k^2)).
%p A368243 b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
%p A368243       b(abs(n-i^2), i-1) +b(n+i^2, i-1))))((1+(3+2*i)*i)*i/6)
%p A368243     end:
%p A368243 a:= n-> `if`(irem(n, 4)>1, 0, b(n^2, n)):
%p A368243 seq(a(n), n=0..49);  # _Alois P. Heinz_, Jan 22 2024
%Y A368243 Cf. A063890, A158092, A348165.
%K A368243 nonn
%O A368243 0,9
%A A368243 _Ilya Gutkovskiy_, Jan 22 2024