cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368247 The number of cubefree divisors of the cubefull part of n (A360540).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e > 2, 3, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x < 3, 1, 3), factor(n)[, 2]));

Formula

a(n) = A073184(A360540(n)).
Multiplicative with a(p^e) = 1 if e <= 2, and 3 otherwise.
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= A073184(n), with equality if and only if n is cubefull (A036966).
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 2/p^(3*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 2/p^3) = 1.37700168952903630206... .
In general, the asymptotic mean of the number of k-free divisors of the k-full part of n is Product_{p prime} (1 + (k-1)/p^k).