cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368249 a(n) = A002378(A005117(n)-1).

Original entry on oeis.org

0, 2, 6, 20, 30, 42, 90, 110, 156, 182, 210, 272, 342, 420, 462, 506, 650, 812, 870, 930, 1056, 1122, 1190, 1332, 1406, 1482, 1640, 1722, 1806, 2070, 2162, 2550, 2756, 2970, 3192, 3306, 3422, 3660, 3782, 4160, 4290, 4422, 4692, 4830, 4970, 5256, 5402, 5852, 6006
Offset: 1

Views

Author

Amiram Eldar, Dec 19 2023

Keywords

Comments

The squarefree oblong numbers (A229882) are all terms of this sequence, and their relative asymptotic density in it is A065474/A059956 = 0.530711... (A065469).

Crossrefs

Programs

  • Mathematica
    Table[n*(n - 1), {n, Select[Range[100], SquareFreeQ]}]
  • PARI
    lista(kmax) = forsquarefree(k=1, kmax, print1(k[1]*(k[1]-1), ", "));
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A368249(n):
        def f(x): return int(n-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m*(m-1) # Chai Wah Wu, Dec 23 2024

Formula

Sum_{n>=2} 1/a(n) = Sum_{k>=2} (zeta(k)/zeta(2*k) - 1) = 0.848633... (A368250).