A368249 a(n) = A002378(A005117(n)-1).
0, 2, 6, 20, 30, 42, 90, 110, 156, 182, 210, 272, 342, 420, 462, 506, 650, 812, 870, 930, 1056, 1122, 1190, 1332, 1406, 1482, 1640, 1722, 1806, 2070, 2162, 2550, 2756, 2970, 3192, 3306, 3422, 3660, 3782, 4160, 4290, 4422, 4692, 4830, 4970, 5256, 5402, 5852, 6006
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[n*(n - 1), {n, Select[Range[100], SquareFreeQ]}]
-
PARI
lista(kmax) = forsquarefree(k=1, kmax, print1(k[1]*(k[1]-1), ", "));
-
Python
from math import isqrt from sympy import mobius def A368249(n): def f(x): return int(n-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1))) m, k = n, f(n) while m != k: m, k = k, f(k) return m*(m-1) # Chai Wah Wu, Dec 23 2024
Formula
Sum_{n>=2} 1/a(n) = Sum_{k>=2} (zeta(k)/zeta(2*k) - 1) = 0.848633... (A368250).
Comments