This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368250 #8 Aug 05 2024 13:41:46 %S A368250 8,4,8,6,3,3,8,6,7,9,6,4,8,8,3,6,3,2,6,8,4,9,0,0,1,2,0,9,0,4,3,0,4,6, %T A368250 2,9,6,0,0,1,6,6,4,4,6,8,8,1,7,5,5,1,7,1,6,7,9,6,2,0,3,0,9,0,0,3,6,5, %U A368250 4,2,2,1,3,7,1,3,0,2,1,2,9,1,8,8,6,6,3,4,8,1,0,1,1,5,3,7,0,2,0,6,3,4,4,3,7 %N A368250 Decimal expansion of Sum_{k>=2} (zeta(k)/zeta(2*k) - 1). %H A368250 Michael I. Shamos, <a href="https://citeseerx.ist.psu.edu/pdf/ae33a269baba5e8b1038e719fb3209e8a00abec5">Shamos's catalog of the real numbers</a>, 2011. See p. 637. %F A368250 Equals Sum_{k>=2} mu(k)^2/(k*(k-1)) = Sum_{k>=2} 1/A368249(k). %F A368250 Equals Sum_{k>=1} 1/A072777(k). %F A368250 Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A368251(k). %e A368250 0.84863386796488363268490012090430462960016644688175... %p A368250 evalf(sum(Zeta(k)/Zeta(2*k) - 1, k = 2 .. infinity), 120); %o A368250 (PARI) sumpos(k=2, zeta(k)/zeta(2*k) - 1) %Y A368250 Cf. A008683, A072777, A368249, A368251. %K A368250 nonn,cons %O A368250 0,1 %A A368250 _Amiram Eldar_, Dec 19 2023