A368254 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal and vertical reflections by a tile that is fixed under horizontal reflections but not vertical reflections.
1, 3, 2, 4, 7, 2, 10, 20, 13, 4, 16, 76, 60, 34, 4, 36, 272, 430, 346, 78, 8, 64, 1072, 2992, 4756, 1768, 237, 9, 136, 4160, 23052, 70024, 53764, 11612, 687, 18, 256, 16576, 178880, 1083664, 1685920, 709316, 75924, 2299, 23
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 ---+--------------------------------------- 1 | 1 3 4 10 16 36 2 | 2 7 20 76 272 1072 3 | 2 13 60 430 2992 23052 4 | 4 34 346 4756 70024 1083664 5 | 4 78 1768 53764 1685920 53762472 6 | 8 237 11612 709316 44881328 2865540112
Links
- Peter Kagey, Illustration of T(2,3)=20
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368254[n_, m_] := 1/(4n)(DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/d)]] + n*2^(n*m/2)*If[EvenQ[n], 1/2 (2^m + 1), 2^(m/2)] + If[EvenQ[m], DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/LCM[d, 2])]], DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/d)], EvenQ]] + n*2^(n*m/2)*Which[EvenQ[m], 1, EvenQ[n], 1/2, True, 0])