cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368255 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal and vertical reflections by a tile that is fixed under vertical reflections but not horizontal reflections.

This page as a plain text file.
%I A368255 #11 Oct 19 2024 21:54:51
%S A368255 1,2,2,3,5,2,6,14,9,4,10,44,50,26,4,20,152,366,298,62,9,36,560,2780,
%T A368255 4244,1692,205,10,72,2144,22028,66184,52740,11272,623,22,136,8384,
%U A368255 175128,1050896,1679368,701124,75486,2171,30
%N A368255 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal and vertical reflections by a tile that is fixed under vertical reflections but not horizontal reflections.
%H A368255 Peter Kagey, <a href="/A368255/a368255.pdf">Illustration of T(2,3)=14</a>
%H A368255 Peter Kagey and William Keehn, <a href="https://arxiv.org/abs/2311.13072">Counting tilings of the n X m grid, cylinder, and torus</a>, arXiv: 2311.13072 [math.CO], 2023.
%e A368255 Table begins:
%e A368255   n\k|  1   2     3       4          5            6
%e A368255   ---+---------------------------------------------
%e A368255    1 |  1   2     3       6         10           20
%e A368255    2 |  2   5    14      44        152          560
%e A368255    3 |  2   9    50     366       2780        22028
%e A368255    4 |  4  26   298    4244      66184      1050896
%e A368255    5 |  4  62  1692   52740    1679368     53696936
%e A368255    6 |  9 205 11272  701124   44761184   2863442960
%e A368255    7 | 10 623 75486 9591666 1227208420 157073688884
%t A368255 A368255[n_, m_] := 1/(4n)*(DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/d)]] + n*(2^(n*m/2 - 1))*Boole[EvenQ[n]] + If[EvenQ[m], DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/LCM[d, 2])]], DivisorSum[n, Function[d, EulerPhi[d]*2^((n*m - n)/LCM[d, 2])*2^(n/d)]]] + n*2^(n*m/2)*Which[EvenQ[m], 1, EvenQ[n], 1/2, True, 0])
%Y A368255 Cf. A368218, A368253, A368254, A368256, A368257, A368260.
%K A368255 nonn,tabl
%O A368255 1,2
%A A368255 _Peter Kagey_, Dec 21 2023