A368256 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal and vertical reflections by a tile that is fixed under 180-degree rotation but not horizontal or vertical reflections.
1, 2, 2, 3, 5, 2, 6, 14, 9, 4, 10, 44, 52, 26, 4, 20, 152, 366, 298, 62, 8, 36, 560, 2800, 4244, 1704, 205, 9, 72, 2144, 22028, 66184, 52740, 11228, 623, 18, 136, 8384, 175296, 1050896, 1679776, 701124, 75412, 2171, 23
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 ---+-------------------------------------------- 1 | 1 2 3 6 10 20 2 | 2 5 14 44 152 560 3 | 2 9 52 366 2800 22028 4 | 4 26 298 4244 66184 1050896 5 | 4 62 1704 52740 1679776 53696936 6 | 8 205 11228 701124 44758448 2863442960 7 | 9 623 75412 9591666 1227199056 157073688884
Links
- Peter Kagey, Illustration of T(2,3)=14
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368256[n_, m_] := 1/(4n)*( DivisorSum[n, EulerPhi[#]*2^(n*m/#) &] + n (2^(n*m/2 - 1))*Boole[EvenQ[n]] + If[EvenQ[m], DivisorSum[n, EulerPhi[#]*2^(n*m/LCM[#, 2]) &], DivisorSum[n, EulerPhi[#]*2^(n*m/#) &, EvenQ]] + n*2^(n*m/2)*Which[EvenQ[m], 1, EvenQ[n], 3/2, True, Sqrt[2]])