A368257 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal and vertical reflections by an asymmetric tile.
1, 6, 4, 16, 44, 6, 72, 544, 366, 23, 256, 8384, 21856, 4244, 52, 1056, 131584, 1399512, 1050128, 52740, 194, 4096, 2100224, 89478656, 268472384, 53687104, 701124, 586, 16512, 33562624, 5726711136, 68719870208, 54975896016, 2863399264, 9591666, 2131
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 ---+------------------------------------------------------- 1 | 1 6 16 72 256 2 | 4 44 544 8384 131584 3 | 6 366 21856 1399512 89478656 4 | 23 4244 1050128 268472384 68719870208 5 | 52 52740 53687104 54975896016 56294995342336 6 | 194 701124 2863399264 11728132423744 48038396383286784
Links
- Peter Kagey, Illustration of T(2,2)=44
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368257[n_, m_] := 1/(4n)*(DivisorSum[n, EulerPhi[#]*4^(n*m/#) &] + n (2^(n*m - 1))*Boole[EvenQ[n]] + If[EvenQ[m], DivisorSum[n, EulerPhi[#]*4^(n*m/LCM[#, 2]) &], DivisorSum[n, EulerPhi[#]*4^(n*m/#) &, EvenQ]] + n*2^(n*m)*Which[EvenQ[m], 1, EvenQ[n], 1/2, True, 0])