cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368257 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal and vertical reflections by an asymmetric tile.

Original entry on oeis.org

1, 6, 4, 16, 44, 6, 72, 544, 366, 23, 256, 8384, 21856, 4244, 52, 1056, 131584, 1399512, 1050128, 52740, 194, 4096, 2100224, 89478656, 268472384, 53687104, 701124, 586, 16512, 33562624, 5726711136, 68719870208, 54975896016, 2863399264, 9591666, 2131
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k|   1      2          3              4                 5
  ---+-------------------------------------------------------
   1 |   1      6         16             72               256
   2 |   4     44        544           8384            131584
   3 |   6    366      21856        1399512          89478656
   4 |  23   4244    1050128      268472384       68719870208
   5 |  52  52740   53687104    54975896016    56294995342336
   6 | 194 701124 2863399264 11728132423744 48038396383286784
		

Programs

  • Mathematica
    A368257[n_, m_] := 1/(4n)*(DivisorSum[n, EulerPhi[#]*4^(n*m/#) &] + n (2^(n*m - 1))*Boole[EvenQ[n]] + If[EvenQ[m], DivisorSum[n, EulerPhi[#]*4^(n*m/LCM[#, 2]) &], DivisorSum[n, EulerPhi[#]*4^(n*m/#) &, EvenQ]] + n*2^(n*m)*Which[EvenQ[m], 1, EvenQ[n], 1/2, True, 0])