A368258 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal reflections by two tiles that are each fixed under horizontal reflection.
2, 4, 3, 8, 10, 4, 16, 36, 20, 6, 32, 136, 120, 55, 8, 64, 528, 816, 666, 136, 13, 128, 2080, 5984, 9316, 3536, 430, 18, 256, 8256, 45760, 139656, 106912, 23052, 1300, 30, 512, 32896, 357760, 2164240, 3371840, 1415896, 151848, 4435, 46
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 ---+------------------------------------------------ 1 | 2 4 8 16 32 64 2 | 3 10 36 136 528 2080 3 | 4 20 120 816 5984 45760 4 | 6 55 666 9316 139656 2164240 5 | 8 136 3536 106912 3371840 107505280 6 | 13 430 23052 1415896 89751728 5730905440 7 | 18 1300 151848 19206736 2454791328 314154568000
Links
- Peter Kagey, Illustration of T(2,3)=36
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368258[n_,m_] := 1/(2n)*(DivisorSum[n, EulerPhi[#]*2^(n*m/#)&] + n*2^(n*m/2)*If[EvenQ[n], 1/2*(2^m + 1), 2^(m/2)])