A368259 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal reflection by an asymmetric tile.
1, 2, 2, 4, 6, 2, 8, 20, 12, 4, 16, 72, 88, 39, 4, 32, 272, 688, 538, 104, 9, 64, 1056, 5472, 8292, 3280, 366, 10, 128, 4160, 43712, 131464, 104864, 22028, 1172, 22, 256, 16512, 349568, 2098704, 3355456, 1399512, 149800, 4179, 30
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 ---+---------------------------------------- 1 | 1 2 4 8 16 32 2 | 2 6 20 72 272 1056 3 | 2 12 88 688 5472 43712 4 | 4 39 538 8292 131464 2098704 5 | 4 104 3280 104864 3355456 107374208 6 | 9 366 22028 1399512 89489584 5726711136
Links
- Peter Kagey, Illustration of T(2,3)=20
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368259[n_,m_]:=1/(2n) (DivisorSum[n,EulerPhi[#]*2^(n*m/#)&]+n*2^(n*m/2-1)*Boole[EvenQ[n]])