A368260 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to vertical reflections by two tiles that are each fixed under vertical reflection.
2, 3, 3, 6, 7, 4, 10, 24, 14, 6, 20, 76, 100, 40, 8, 36, 288, 700, 564, 108, 14, 72, 1072, 5560, 8296, 3384, 362, 20, 136, 4224, 43800, 131856, 104968, 22288, 1182, 36, 272, 16576, 350256, 2098720, 3358736, 1399176, 150972, 4150, 60
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 ---+----------------------------------------- 1 | 2 3 6 10 20 36 2 | 3 7 24 76 288 1072 3 | 4 14 100 700 5560 43800 4 | 6 40 564 8296 131856 2098720 5 | 8 108 3384 104968 3358736 107377488 6 | 14 362 22288 1399176 89505984 5726689312
Links
- Peter Kagey, Illustration of T(2,3)=24
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368260[n_, m_] := 1/(2 n) (DivisorSum[n, EulerPhi[#]*2^(n*m/#) &] + If[EvenQ[m], DivisorSum[n, EulerPhi[#]*2^(n*m/LCM[#, 2]) &], DivisorSum[n, EulerPhi[#]*2^((n*m - n)/LCM[#, 2])*2^(n/#) &]])