A368261 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to vertical reflection by an asymmetric tile.
1, 3, 2, 4, 7, 2, 10, 20, 14, 4, 16, 76, 88, 40, 4, 36, 272, 700, 532, 108, 8, 64, 1072, 5472, 8296, 3280, 362, 10, 136, 4160, 43800, 131344, 104968, 21944, 1182, 20, 256, 16576, 349568, 2098720, 3355456, 1399176, 149800, 4150, 30
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 ---+---------------------------------------- 1 | 1 3 4 10 16 36 2 | 2 7 20 76 272 1072 3 | 2 14 88 700 5472 43800 4 | 4 40 532 8296 131344 2098720 5 | 4 108 3280 104968 3355456 107377488 6 | 8 362 21944 1399176 89484128 5726689312
Links
- Peter Kagey, Illustration of T(2,3)=20
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368261[n_, m_]:=1/(2n)*(DivisorSum[n, EulerPhi[#]*2^(n*m/#)&] + If[EvenQ[m], DivisorSum[n, EulerPhi[#]*2^(n*m/LCM[#, 2])&], DivisorSum[n, EulerPhi[#]*2^(n*m/#)&, EvenQ]])