A368262 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to 180-degree rotation by two tiles that are each fixed under 180-degree rotation.
2, 3, 3, 6, 7, 4, 10, 24, 16, 6, 20, 76, 104, 43, 8, 36, 288, 720, 570, 120, 13, 72, 1072, 5600, 8356, 3408, 382, 18, 136, 4224, 43968, 131976, 105376, 22284, 1236, 30, 272, 16576, 350592, 2099728, 3359552, 1400536, 150824, 4243, 46
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 ---+----------------------------------------- 1 | 2 3 6 10 20 36 2 | 3 7 24 76 288 1072 3 | 4 16 104 720 5600 43968 4 | 6 43 570 8356 131976 2099728 5 | 8 120 3408 105376 3359552 107390592 6 | 13 382 22284 1400536 89505968 5726776672
Links
- Peter Kagey, Illustration of T(2,3)=24
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368262[n_, m_] := 1/(2n)*(DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/d)]] + n*2^(n*m/2)*Which[EvenQ[m], 1, EvenQ[n], 3/2, True, Sqrt[2]])