cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368278 Prime numbers that have an odd number of monotone Bacher representations (A368276).

This page as a plain text file.
%I A368278 #29 Apr 26 2025 01:30:03
%S A368278 2,3,11,19,29,31,37,41,47,67,73,89,97,101,103,149,151,157,163,173,179,
%T A368278 197,229,233,251,263,269,281,283,311,349,373,383,397,409,419,433,443,
%U A368278 463,487,491,521,523,557,577,587,601,607,619,659,661,673,677,701,719
%N A368278 Prime numbers that have an odd number of monotone Bacher representations (A368276).
%C A368278 We call a quadruple (w, x, y, z) of nonnegative integers a monotone Bacher representation of n if and only if n = w*x + y*z and w <= x < y <= z.
%H A368278 Roland Bacher, <a href="https://doi.org/10.1080/00029890.2023.2242034">A quixotic proof of Fermat's two squares theorem for prime numbers</a>, American Mathematical Monthly, Vol. 130, No. 9 (November 2023), 824-836; <a href="https://arxiv.org/abs/2210.07657">arXiv version</a>, arXiv:2210.07657 [math.NT], 2022.
%e A368278 For n = 19, the 5 solutions are (w, x, y, z) = (0, 0, 1, 19), (1, 1, 2, 9), (1, 1, 3, 6), (1, 3, 4, 4), (2, 2, 3, 5).
%t A368278 t[n_]:=t[n]=Select[Divisors[n],#^2<=n&];
%t A368278 A368276[n_]:=Total[t[n]]+Sum[Boole[wx<d*dx],{wx,Floor[n/2]},{dx,t[wx]},{d,t[n-wx]}];
%t A368278 Select[Prime[Range[200]],OddQ[A368276[#]]&] (* _Paolo Xausa_, Jan 02 2024 *)
%o A368278 (Julia)
%o A368278 using Nemo
%o A368278 println([n for n in 1:720 if isodd(A368276(n)) && is_prime(n)])
%o A368278 (Python)
%o A368278 from itertools import takewhile, islice
%o A368278 from sympy import divisors, nextprime
%o A368278 def A368278_gen(startvalue=2): # generator of terms >= startvalue
%o A368278     p = max(nextprime(startvalue-1),2)
%o A368278     while True:
%o A368278         c = sum(takewhile(lambda x:x**2<=p,divisors(p))) & 1
%o A368278         for wx in range(1,(p>>1)+1):
%o A368278             for d1 in divisors(wx):
%o A368278                 if d1**2 > wx:
%o A368278                     break
%o A368278                 m = p-wx
%o A368278                 c = c+sum(1 for d in takewhile(lambda x:x**2<=m,divisors(m)) if wx<d*d1)&1
%o A368278         if c:
%o A368278             yield p
%o A368278         p = nextprime(p)
%o A368278 A368278_list = list(islice(A368278_gen(),30)) # _Chai Wah Wu_, Dec 19 2023
%Y A368278 Cf. A368276, A368277, A368207.
%K A368278 nonn
%O A368278 1,1
%A A368278 _Peter Luschny_, Dec 19 2023