This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368278 #29 Apr 26 2025 01:30:03 %S A368278 2,3,11,19,29,31,37,41,47,67,73,89,97,101,103,149,151,157,163,173,179, %T A368278 197,229,233,251,263,269,281,283,311,349,373,383,397,409,419,433,443, %U A368278 463,487,491,521,523,557,577,587,601,607,619,659,661,673,677,701,719 %N A368278 Prime numbers that have an odd number of monotone Bacher representations (A368276). %C A368278 We call a quadruple (w, x, y, z) of nonnegative integers a monotone Bacher representation of n if and only if n = w*x + y*z and w <= x < y <= z. %H A368278 Roland Bacher, <a href="https://doi.org/10.1080/00029890.2023.2242034">A quixotic proof of Fermat's two squares theorem for prime numbers</a>, American Mathematical Monthly, Vol. 130, No. 9 (November 2023), 824-836; <a href="https://arxiv.org/abs/2210.07657">arXiv version</a>, arXiv:2210.07657 [math.NT], 2022. %e A368278 For n = 19, the 5 solutions are (w, x, y, z) = (0, 0, 1, 19), (1, 1, 2, 9), (1, 1, 3, 6), (1, 3, 4, 4), (2, 2, 3, 5). %t A368278 t[n_]:=t[n]=Select[Divisors[n],#^2<=n&]; %t A368278 A368276[n_]:=Total[t[n]]+Sum[Boole[wx<d*dx],{wx,Floor[n/2]},{dx,t[wx]},{d,t[n-wx]}]; %t A368278 Select[Prime[Range[200]],OddQ[A368276[#]]&] (* _Paolo Xausa_, Jan 02 2024 *) %o A368278 (Julia) %o A368278 using Nemo %o A368278 println([n for n in 1:720 if isodd(A368276(n)) && is_prime(n)]) %o A368278 (Python) %o A368278 from itertools import takewhile, islice %o A368278 from sympy import divisors, nextprime %o A368278 def A368278_gen(startvalue=2): # generator of terms >= startvalue %o A368278 p = max(nextprime(startvalue-1),2) %o A368278 while True: %o A368278 c = sum(takewhile(lambda x:x**2<=p,divisors(p))) & 1 %o A368278 for wx in range(1,(p>>1)+1): %o A368278 for d1 in divisors(wx): %o A368278 if d1**2 > wx: %o A368278 break %o A368278 m = p-wx %o A368278 c = c+sum(1 for d in takewhile(lambda x:x**2<=m,divisors(m)) if wx<d*d1)&1 %o A368278 if c: %o A368278 yield p %o A368278 p = nextprime(p) %o A368278 A368278_list = list(islice(A368278_gen(),30)) # _Chai Wah Wu_, Dec 19 2023 %Y A368278 Cf. A368276, A368277, A368207. %K A368278 nonn %O A368278 1,1 %A A368278 _Peter Luschny_, Dec 19 2023