cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A368277 Prime numbers that have an even number of monotone Bacher representations (A368276).

Original entry on oeis.org

5, 7, 13, 17, 23, 43, 53, 59, 61, 71, 79, 83, 107, 109, 113, 127, 131, 137, 139, 167, 181, 191, 193, 199, 211, 223, 227, 239, 241, 257, 271, 277, 293, 307, 313, 317, 331, 337, 347, 353, 359, 367, 379, 389, 401, 421, 431, 439, 449, 457, 461, 467, 479, 499
Offset: 1

Views

Author

Peter Luschny, Dec 19 2023

Keywords

Comments

We call a quadruple (w, x, y, z) of nonnegative integers a monotone Bacher representation of n if and only if n = w*x + y*z and w <= x < y <= z.

Examples

			For n = 13, the 4 solutions are (w, x, y, z) = (0, 0, 1, 13), (1, 1, 2, 6), (1, 1, 3, 4), (2, 2, 3, 3).
		

Crossrefs

Programs

  • Julia
    using Nemo
    println([n for n in 1:500 if iseven(A368276(n)) && is_prime(n)])
    
  • Mathematica
    t[n_]:=t[n]=Select[Divisors[n],#^2<=n&];
    A368276[n_]:=Total[t[n]]+Sum[Boole[wxA368276[#]]&] (* Paolo Xausa, Jan 02 2024 *)
  • Python
    from itertools import takewhile, islice
    from sympy import nextprime, divisors
    def A368277_gen(startvalue=2): # generator of terms >= startvalue
        p = max(nextprime(startvalue-1),2)
        while True:
            c = sum(takewhile(lambda x:x**2<=p,divisors(p))) &1
            for wx in range(1,(p>>1)+1):
                for d1 in divisors(wx):
                    if d1**2 > wx:
                        break
                    m = p-wx
                    c = c+sum(1 for d in takewhile(lambda x:x**2<=m,divisors(m)) if wxA368277_list = list(islice(A368277_gen(),30)) # Chai Wah Wu, Dec 19 2023
Showing 1-1 of 1 results.