A369492
Triangle read by rows. An encoding of compositions of n where the first part is the largest part and the last part is not 1. The number of these compositions (the length of row n) is given by A368279.
Original entry on oeis.org
1, 0, 2, 4, 8, 10, 16, 18, 22, 32, 34, 36, 38, 42, 46, 64, 66, 68, 70, 74, 76, 78, 86, 90, 94, 128, 130, 132, 134, 136, 138, 140, 142, 146, 148, 150, 154, 156, 158, 170, 174, 182, 186, 190, 256, 258, 260, 262, 264, 266, 268, 270, 274, 276, 278, 280, 282, 284, 286
Offset: 0
Encoding the composition as an integer, a binary string, a Dyck path, and a list.
[ n]
[ 0] 1 | 1 | () | [()]
[ 1] 0 | 0 | . | []
[ 2] 2 | 10 | (()) | [2]
[ 3] 4 | 100 | ((())) | [3]
[ 4] 8 | 1000 | (((()))) | [4]
[ 5] 10 | 1010 | (())(()) | [2, 2]
[ 6] 16 | 10000 | ((((())))) | [5]
[ 7] 18 | 10010 | ((()))(()) | [3, 2]
[ 8] 22 | 10110 | (())()(()) | [2, 1, 2]
[ 9] 32 | 100000 | (((((()))))) | [6]
[10] 34 | 100010 | (((())))(()) | [4, 2]
[11] 36 | 100100 | ((()))((())) | [3, 3]
[12] 38 | 100110 | ((()))()(()) | [3, 1, 2]
[13] 42 | 101010 | (())(())(()) | [2, 2, 2]
[14] 46 | 101110 | (())()()(()) | [2, 1, 1, 2]
Sequence seen as table:
[0] 1;
[1] 0;
[2] 2;
[3] 4;
[4] 8, 10;
[5] 16, 18, 22;
[6] 32, 34, 36, 38, 42, 46;
[7] 64, 66, 68, 70, 74, 76, 78, 86, 90, 94;
...
-
# See the notebook in the links section, that includes a time and space efficient algorithm to generate the compositions. Alternatively, using SageMath's generator:
def pr(bw, w, dw, c):
print(f"{bw:3d} | {str(w).ljust(7)} | {str(dw).ljust(14)} | {c}")
def Trow(n):
row, count = [], 0
for c in reversed(Compositions(n)):
if c == []:
count = 1
pr(1, 1, "()", "[()]")
elif c == [1]:
pr(0, 0, ".", "[]")
elif c[-1] != 1:
if all(part <= c[0] for part in c):
w = Words([0, 1])(c.to_code())
dw = DyckWord(sum([[1]*a + [0]*a for a in c], []))
bw = int(str(w), 2)
row.append(bw)
count += 1
pr(bw, w, dw, c)
# print(f"For n = {n} there are {count} composition of type A369492.")
return row
for n in range(0, 7): Trow(n)
A369584
a(n) = 2^(n - 3) - A368279(n) for n >= 5, otherwise 0. Number of compositions of n whose first and last part is not equal to 1 and whose first part is not the largest part.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 2, 6, 13, 30, 65, 140, 296, 622, 1294, 2679, 5518, 11323, 23160, 47250, 96184, 195438, 396490, 803292, 1625591, 3286340, 6637913, 13397224, 27020974, 54465702, 109725932, 220944768, 444700208, 894701728, 1799419458, 3617792587, 7271505058
Offset: 0
The compositions of class Z(n) for n = 5..7 are:
5: [2, 3];
6: [2, 1, 3], [2, 4];
7: [2, 1, 1, 3], [2, 1, 4], [2, 2, 3], [2, 3, 2], [2, 5], [3, 4].
The cardinalities of some tripartitions, |X(n)| + |Y(n)| + |Z(n)| = 2^(n - 1):
5: 12 + 3 + 1 = 16;
6: 24 + 6 + 2 = 32;
7: 48 + 10 + 6 = 64;
8: 96 + 19 + 13 = 128;
9: 192 + 34 + 30 = 256;
10: 384 + 63 + 65 = 512.
-
gf := 1 + (x - 1)*(1 + x^2 / (2*x - 1) + sum(x^n / (1 - x*(1 - x^n)/(1 - x)),
n = 1..42)): ser := series(gf, x, 40): seq(coeff(ser, x, n), n = 0..36);
-
def A369584(n):
if n < 5: return 0
return 2^(n - 3) - A368279(n)
print([A369584(n) for n in range(37)])
A368579
Triangle read by rows. T(n, k) is the number of compositions of n where the first part k is the largest part and the last part is not 1.
Original entry on oeis.org
1, -1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 2, 1, 0, 1, 0, 0, 3, 3, 2, 1, 0, 1, 0, 0, 5, 6, 4, 2, 1, 0, 1, 0, 0, 8, 11, 7, 4, 2, 1, 0, 1, 0, 0, 13, 20, 14, 8, 4, 2, 1, 0, 1, 0, 0, 21, 37, 27, 15, 8, 4, 2, 1, 0, 1
Offset: 0
Triangle T(n, k) starts:
[0] [ 1]
[1] [-1, 1]
[2] [ 0, 0, 1]
[3] [ 0, 0, 0, 1]
[4] [ 0, 0, 1, 0, 1]
[5] [ 0, 0, 1, 1, 0, 1]
[6] [ 0, 0, 2, 2, 1, 0, 1]
[7] [ 0, 0, 3, 3, 2, 1, 0, 1]
[8] [ 0, 0, 5, 6, 4, 2, 1, 0, 1]
[9] [ 0, 0, 8, 11, 7, 4, 2, 1, 0, 1]
For instance, row 6 lists the compositions below:
0 .
1 .
2 [2, 2, 2], [2, 1, 1, 2];
3 [3, 3], [3, 1, 2];
4 [4, 2];
5 .
6 [6].
-
from functools import cache
@cache
def F(k, n):
return sum(F(k, n-j) for j in range(1, min(k, n))) if n > 1 else n
def Trow(n):
return list(F(k+1, n+1-k) - F(k+1, n-k) for k in range(n+1))
print(flatten([Trow(n) for n in range(12)]))
A369115
Expansion of (1 - x)^(-2) * Sum_{j>=0} (x^j / (1 - Sum_{k=1..j} x^k)).
Original entry on oeis.org
1, 3, 7, 14, 26, 46, 80, 138, 239, 417, 735, 1309, 2355, 4275, 7823, 14416, 26728, 49820, 93300, 175454, 331170, 627154, 1191204, 2268604, 4330915, 8286101, 15884857, 30507175, 58686513, 113066033, 218137531, 421391695, 814999229, 1578000229, 3058458885, 5933549906
Offset: 0
-
gf := (1 - x)^(-2) * add(x^j / (1 - add(x^k, k = 1..j)), j = 0..42):
ser := series(gf, x, 40): seq(coeff(ser, x, k), k = 0..38);
A369116
Expansion of (1 - x)^2 * Sum_{j>=0} (x^j / (1 - Sum_{k=1..j} x^k)).
Original entry on oeis.org
1, -1, 1, 0, 1, 1, 3, 4, 9, 15, 29, 53, 100, 186, 352, 663, 1257, 2387, 4547, 8678, 16602, 31818, 61092, 117486, 226277, 436403, 842731, 1629297, 3153466, 6109704, 11848634, 22998892, 44680016, 86869392, 169024094, 329110519, 641254825, 1250261783, 2439155631
Offset: 0
-
gf := (1 - x)^2 * add(x^j / (1 - add(x^k, k = 1..j)), j = 0..42):
ser := series(gf, x, 40): seq(coeff(ser, x, k), k = 0..38);
Showing 1-5 of 5 results.
Comments