cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368305 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k torus up to horizontal reflections by two tiles that are both fixed under horizontal reflection.

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 6, 14, 13, 6, 8, 40, 44, 34, 8, 14, 108, 218, 226, 78, 13, 20, 362, 1200, 2386, 1184, 237, 18, 36, 1182, 7700, 27936, 26892, 7700, 687, 30, 60, 4150, 51112, 361244, 674384, 354680, 50628, 2299, 46
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k|  1   2    3      4        5         6
  ---+--------------------------------------
   1 |  2   3    4      6        8        14
   2 |  3   7   14     40      108       362
   3 |  4  13   44    218     1200      7700
   4 |  6  34  226   2386    27936    361244
   5 |  8  78 1184  26892   674384  17920876
   6 | 13 237 7700 354680 17950356 955180432
		

Crossrefs

Programs

  • Mathematica
    A368305[n_, m_]:=1/(2*n*m)*(DivisorSum[n, Function[d, DivisorSum[m, EulerPhi[#]EulerPhi[d]2^(m*n/LCM[#, d])&]]] + n*If[EvenQ[n], DivisorSum[m, EulerPhi[#](2^(n*m/LCM[2, #]) + 2^((n - 2)*m/LCM[2, #])*4^(m/#))&]/2, DivisorSum[m, EulerPhi[#](2^((n - 1)*m/LCM[2, #])*2^(m/#))&]])