A368306 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k torus up to horizontal reflections by a tile that is not fixed under horizontal reflection.
1, 2, 2, 2, 5, 2, 4, 8, 9, 4, 4, 24, 32, 26, 4, 8, 56, 186, 182, 62, 9, 10, 190, 1096, 2130, 1096, 205, 10, 20, 596, 7356, 26296, 26380, 7356, 623, 22, 30, 2102, 49940, 350316, 671104, 350584, 49940, 2171, 30
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 ---+------------------------------------- 1 | 1 2 2 4 4 8 2 | 2 5 8 24 56 190 3 | 2 9 32 186 1096 7356 4 | 4 26 182 2130 26296 350316 5 | 4 62 1096 26380 671104 17899020 6 | 9 205 7356 350584 17897924 954481360
Links
- Peter Kagey, Illustration of T(3,3)=32
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368306[n_, m_] := 1/(2*n*m)*(DivisorSum[n, Function[d, DivisorSum[m, EulerPhi[#] EulerPhi[d] 2^(m*n/LCM[#, d]) &]]] + n*If[EvenQ[n], DivisorSum[m, EulerPhi[#] (2^(n*m/LCM[2, #]) + 2^((n - 2)*m/LCM[2, #])*4^(m/#)*Boole[EvenQ[#]]) &]/2, DivisorSum[m, EulerPhi[#]*2^(n*m/#) &, EvenQ]])