A368307 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k torus up to 180-degree rotation by two tiles that are both fixed under 180-degree rotation.
2, 3, 3, 4, 7, 4, 6, 13, 13, 6, 8, 34, 48, 34, 8, 13, 78, 224, 224, 78, 13, 18, 237, 1224, 2302, 1224, 237, 18, 30, 687, 7696, 27012, 27012, 7696, 687, 30, 46, 2299, 50964, 353384, 675200, 353384, 50964, 2299, 46
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 ---+-------------------------------------- 1 | 2 3 4 6 8 13 2 | 3 7 13 34 78 237 3 | 4 13 48 224 1224 7696 4 | 6 34 224 2302 27012 353384 5 | 8 78 1224 27012 675200 17920860 6 | 13 237 7696 353384 17920860 954677952
Links
- Peter Kagey, Illustration of T(3,3)=48
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368307[n_, m_] := 1/(2*n*m) (DivisorSum[n, Function[d, DivisorSum[m, EulerPhi[#] EulerPhi[d] 2^(m*n/LCM[#, d]) &]]] + n*m*2^(n*m/2)* Which[OddQ[n*m], Sqrt[2], OddQ[n + m], 3/2, True, 7/4])