cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A368304 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k torus up to horizontal and vertical reflections by an asymmetric tile.

Original entry on oeis.org

1, 4, 4, 6, 28, 6, 23, 194, 194, 23, 52, 2196, 7296, 2196, 52, 194, 26524, 350573, 350573, 26524, 194, 586, 351588, 17895736, 67136624, 17895736, 351588, 586, 2131, 4798174, 954495904, 13744131446, 13744131446, 954495904, 4798174, 2131
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k|   1      2         3             4                5
  ---+----------------------------------------------------
   1 |   1      4         6            23               52
   2 |   4     28       194          2196            26524
   3 |   6    194      7296        350573         17895736
   4 |  23   2196    350573      67136624      13744131446
   5 |  52  26524  17895736   13744131446   11258999068672
   6 | 194 351588 954495904 2932037300956 9607679419823148
		

Crossrefs

Programs

  • Mathematica
    A368304[n_,m_]:=1/(4*n*m) (DivisorSum[n, Function[d,DivisorSum[m,Function[c,EulerPhi[c]EulerPhi[d]4^(m*n/LCM[c,d])]]]]+If[EvenQ[n],n/2*DivisorSum[m, EulerPhi[#](4^(n*m/LCM[2,#])+4^((n-2)*m/LCM[2,#])*4^(2m/#)*Boole[EvenQ[#]])&],n*DivisorSum[m,EulerPhi[#](4^(n*m/#))&,EvenQ]]+If[EvenQ[m], m/2*DivisorSum[n,EulerPhi[#](4^(n*m/LCM[2,#])+4^((m-2)*n/LCM[2,#])*4^(2n/#)*Boole[EvenQ[#]])&],m*DivisorSum[n, EulerPhi[#](4^(m*n/#))&,EvenQ]]+Which[EvenQ[n]&&EvenQ[m],(n*m)/4 (3*2^(n*m)),OddQ[n*m],0,OddQ[n+m],(n*m)/2 (2^(n*m))])

A368306 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k torus up to horizontal reflections by a tile that is not fixed under horizontal reflection.

Original entry on oeis.org

1, 2, 2, 2, 5, 2, 4, 8, 9, 4, 4, 24, 32, 26, 4, 8, 56, 186, 182, 62, 9, 10, 190, 1096, 2130, 1096, 205, 10, 20, 596, 7356, 26296, 26380, 7356, 623, 22, 30, 2102, 49940, 350316, 671104, 350584, 49940, 2171, 30
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k| 1   2    3      4        5         6
  ---+-------------------------------------
   1 | 1   2    2      4        4         8
   2 | 2   5    8     24       56       190
   3 | 2   9   32    186     1096      7356
   4 | 4  26  182   2130    26296    350316
   5 | 4  62 1096  26380   671104  17899020
   6 | 9 205 7356 350584 17897924 954481360
		

Crossrefs

Programs

  • Mathematica
    A368306[n_, m_] := 1/(2*n*m)*(DivisorSum[n, Function[d, DivisorSum[m, EulerPhi[#] EulerPhi[d] 2^(m*n/LCM[#, d]) &]]] + n*If[EvenQ[n], DivisorSum[m, EulerPhi[#] (2^(n*m/LCM[2, #]) + 2^((n - 2)*m/LCM[2, #])*4^(m/#)*Boole[EvenQ[#]]) &]/2, DivisorSum[m, EulerPhi[#]*2^(n*m/#) &, EvenQ]])

A368307 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k torus up to 180-degree rotation by two tiles that are both fixed under 180-degree rotation.

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 6, 13, 13, 6, 8, 34, 48, 34, 8, 13, 78, 224, 224, 78, 13, 18, 237, 1224, 2302, 1224, 237, 18, 30, 687, 7696, 27012, 27012, 7696, 687, 30, 46, 2299, 50964, 353384, 675200, 353384, 50964, 2299, 46
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k|  1   2    3      4        5         6
  ---+--------------------------------------
   1 |  2   3    4      6        8        13
   2 |  3   7   13     34       78       237
   3 |  4  13   48    224     1224      7696
   4 |  6  34  224   2302    27012    353384
   5 |  8  78 1224  27012   675200  17920860
   6 | 13 237 7696 353384 17920860 954677952
		

Crossrefs

Programs

  • Mathematica
    A368307[n_, m_] :=  1/(2*n*m) (DivisorSum[n,  Function[d,  DivisorSum[m, EulerPhi[#] EulerPhi[d] 2^(m*n/LCM[#, d]) &]]] +  n*m*2^(n*m/2)* Which[OddQ[n*m], Sqrt[2], OddQ[n + m], 3/2, True, 7/4])
Showing 1-3 of 3 results.