cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368330 The number of terms of A054743 that are unitary divisors of n.

This page as a plain text file.
%I A368330 #9 Apr 26 2025 21:35:29
%S A368330 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,
%T A368330 1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,
%U A368330 1,1,1,2,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1
%N A368330 The number of terms of A054743 that are unitary divisors of n.
%C A368330 First differ from A043281 at n = 49.
%H A368330 Amiram Eldar, <a href="/A368330/b368330.txt">Table of n, a(n) for n = 1..10000</a>
%F A368330 Multiplicative with a(p^e) = 1 if e <= p, and a(p^e) = 2 if e > p.
%F A368330 a(n) = A034444(A368329(n)).
%F A368330 a(n) >= 1, with equality if and only if n is in A207481.
%F A368330 a(n) <= A034444(n), with equality if and only if n is in A054743.
%F A368330 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^((p+1)*s)).
%F A368330 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/p^(p+1)) = 1.13896197534988330925... .
%t A368330 f[p_, e_] := If[e <= p, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A368330 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= f[i,1], 1, 2));}
%Y A368330 Cf. A034444, A054743, A207481, A368328, A368329, A368331, A368334.
%Y A368330 Cf. A043281.
%K A368330 nonn,easy,mult
%O A368330 1,8
%A A368330 _Amiram Eldar_, Dec 21 2023