cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368331 The number of divisors of the largest term of A054743 that divides of n.

This page as a plain text file.
%I A368331 #9 Apr 26 2025 21:35:36
%S A368331 1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,6,1,1,
%T A368331 1,1,1,1,1,4,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,7,1,1,1,1,
%U A368331 1,1,1,4,1,1,1,1,1,1,1,5,5,1,1,1,1,1,1
%N A368331 The number of divisors of the largest term of A054743 that divides of n.
%C A368331 First differs from A366145 at n = 27.
%H A368331 Amiram Eldar, <a href="/A368331/b368331.txt">Table of n, a(n) for n = 1..10000</a>
%F A368331 Multiplicative with a(p^e) = 1 if e <= p, and a(p^e) = e+1 if e > p.
%F A368331 a(n) = A000005(A368329(n)).
%F A368331 a(n) >= 1, with equality if and only if n is in A207481.
%F A368331 a(n) <= A000005(n), with equality if and only if n is in A054743.
%F A368331 Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s - 1/p^((p+2)*s-1) + 1/p^((p+1)*s) + 1/p^((p+1)*s-1)).
%F A368331 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/((p-1)*p^(p-1))) = 1.58396891058853238595... .
%t A368331 f[p_, e_] := If[e <= p, 1, e+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A368331 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= f[i,1], 1, f[i,2]+1));}
%Y A368331 Cf. A000005, A054743, A207481, A368328, A368329, A368330, A368335, A368336.
%Y A368331 Cf. A366145.
%K A368331 nonn,easy,mult
%O A368331 1,8
%A A368331 _Amiram Eldar_, Dec 21 2023