cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368334 The number of terms of A054744 that are unitary divisors of n.

This page as a plain text file.
%I A368334 #10 Apr 26 2025 21:35:49
%S A368334 1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,2,2,1,1,1,2,1,1,
%T A368334 1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,1,1,2,1,1,1,2,
%U A368334 1,1,1,2,1,1,1,2,1,1,1,2,2,1,1,2,1,1,1
%N A368334 The number of terms of A054744 that are unitary divisors of n.
%C A368334 First differs from A081117 at n = 28.
%C A368334 Also, the number of terms of A072873 that are unitary divisors of n.
%H A368334 Amiram Eldar, <a href="/A368334/b368334.txt">Table of n, a(n) for n = 1..10000</a>
%F A368334 Multiplicative with a(p^e) = 1 if e < p, and a(p^e) = 2 if e >= p.
%F A368334 a(n) = A034444(A368333(n)).
%F A368334 a(n) = A034444(A327939(n)).
%F A368334 a(n) >= 1, with equality if and only if n is in A048103.
%F A368334 a(n) <= A034444(n), with equality if and only if n is in A054744.
%F A368334 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(p*s)).
%F A368334 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/p^p) = 1.29671268566745796443... .
%t A368334 f[p_, e_] := If[e < p, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A368334 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] < f[i,1], 1, 2));}
%Y A368334 Cf. A034444, A048103, A054744, A072873, A327939, A368330, A368332, A368333, A368335.
%Y A368334 Cf. A081117.
%K A368334 nonn,easy,mult
%O A368334 1,4
%A A368334 _Amiram Eldar_, Dec 21 2023