This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368334 #10 Apr 26 2025 21:35:49 %S A368334 1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,2,2,1,1,1,2,1,1, %T A368334 1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,1,1,2,1,1,1,2, %U A368334 1,1,1,2,1,1,1,2,1,1,1,2,2,1,1,2,1,1,1 %N A368334 The number of terms of A054744 that are unitary divisors of n. %C A368334 First differs from A081117 at n = 28. %C A368334 Also, the number of terms of A072873 that are unitary divisors of n. %H A368334 Amiram Eldar, <a href="/A368334/b368334.txt">Table of n, a(n) for n = 1..10000</a> %F A368334 Multiplicative with a(p^e) = 1 if e < p, and a(p^e) = 2 if e >= p. %F A368334 a(n) = A034444(A368333(n)). %F A368334 a(n) = A034444(A327939(n)). %F A368334 a(n) >= 1, with equality if and only if n is in A048103. %F A368334 a(n) <= A034444(n), with equality if and only if n is in A054744. %F A368334 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(p*s)). %F A368334 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/p^p) = 1.29671268566745796443... . %t A368334 f[p_, e_] := If[e < p, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A368334 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] < f[i,1], 1, 2));} %Y A368334 Cf. A034444, A048103, A054744, A072873, A327939, A368330, A368332, A368333, A368335. %Y A368334 Cf. A081117. %K A368334 nonn,easy,mult %O A368334 1,4 %A A368334 _Amiram Eldar_, Dec 21 2023