cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368335 The number of divisors of the largest term of A054744 that divides of n.

This page as a plain text file.
%I A368335 #11 Apr 26 2025 21:35:56
%S A368335 1,1,1,3,1,1,1,4,1,1,1,3,1,1,1,5,1,1,1,3,1,1,1,4,1,1,4,3,1,1,1,6,1,1,
%T A368335 1,3,1,1,1,4,1,1,1,3,1,1,1,5,1,1,1,3,1,4,1,4,1,1,1,3,1,1,1,7,1,1,1,3,
%U A368335 1,1,1,4,1,1,1,3,1,1,1,5,5,1,1,3,1,1,1
%N A368335 The number of divisors of the largest term of A054744 that divides of n.
%H A368335 Amiram Eldar, <a href="/A368335/b368335.txt">Table of n, a(n) for n = 1..10000</a>
%F A368335 Multiplicative with a(p^e) = 1 if e < p, and a(p^e) = e+1 if e >= p.
%F A368335 a(n) = A000005(A368333(n)).
%F A368335 a(n) >= 1, with equality if and only if n is in A048103.
%F A368335 a(n) <= A000005(n), with equality if and only if n is in A054744.
%F A368335 Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 1/p^(p*s-1) + 1/p^((p+1)*s) - 1/p^((p+1)*s-1)).
%F A368335 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (1 + (p-1)*p)/((p-1)*p^p)) = 1.98019019497523582894... .
%t A368335 f[p_, e_] := If[e < p, 1, e+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A368335 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] < f[i,1], 1, f[i,2]+1));}
%Y A368335 Cf. A000005, A048103, A054744, A368331, A368332, A368333, A368334, A368336.
%K A368335 nonn,easy,mult
%O A368335 1,4
%A A368335 _Amiram Eldar_, Dec 21 2023