This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368335 #11 Apr 26 2025 21:35:56 %S A368335 1,1,1,3,1,1,1,4,1,1,1,3,1,1,1,5,1,1,1,3,1,1,1,4,1,1,4,3,1,1,1,6,1,1, %T A368335 1,3,1,1,1,4,1,1,1,3,1,1,1,5,1,1,1,3,1,4,1,4,1,1,1,3,1,1,1,7,1,1,1,3, %U A368335 1,1,1,4,1,1,1,3,1,1,1,5,5,1,1,3,1,1,1 %N A368335 The number of divisors of the largest term of A054744 that divides of n. %H A368335 Amiram Eldar, <a href="/A368335/b368335.txt">Table of n, a(n) for n = 1..10000</a> %F A368335 Multiplicative with a(p^e) = 1 if e < p, and a(p^e) = e+1 if e >= p. %F A368335 a(n) = A000005(A368333(n)). %F A368335 a(n) >= 1, with equality if and only if n is in A048103. %F A368335 a(n) <= A000005(n), with equality if and only if n is in A054744. %F A368335 Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 1/p^(p*s-1) + 1/p^((p+1)*s) - 1/p^((p+1)*s-1)). %F A368335 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (1 + (p-1)*p)/((p-1)*p^p)) = 1.98019019497523582894... . %t A368335 f[p_, e_] := If[e < p, 1, e+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A368335 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] < f[i,1], 1, f[i,2]+1));} %Y A368335 Cf. A000005, A048103, A054744, A368331, A368332, A368333, A368334, A368336. %K A368335 nonn,easy,mult %O A368335 1,4 %A A368335 _Amiram Eldar_, Dec 21 2023