cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368336 The number of divisors of the largest term of A072873 that divides of n.

This page as a plain text file.
%I A368336 #7 Dec 21 2023 21:16:06
%S A368336 1,1,1,3,1,1,1,3,1,1,1,3,1,1,1,5,1,1,1,3,1,1,1,3,1,1,4,3,1,1,1,5,1,1,
%T A368336 1,3,1,1,1,3,1,1,1,3,1,1,1,5,1,1,1,3,1,4,1,3,1,1,1,3,1,1,1,7,1,1,1,3,
%U A368336 1,1,1,3,1,1,1,3,1,1,1,5,4,1,1,3,1,1,1
%N A368336 The number of divisors of the largest term of A072873 that divides of n.
%H A368336 Amiram Eldar, <a href="/A368336/b368336.txt">Table of n, a(n) for n = 1..10000</a>
%F A368336 a(n) = A000005(A327939(n)).
%F A368336 Multiplicative with a(p^e) = e - (e mod p) + 1.
%F A368336 a(n) >= 1, with equality if and only if n is in A048103.
%F A368336 a(n) <= A000005(n), with equality if and only if n is in A072873.
%F A368336 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + p/(p^p-1)) = 1.86196549645040699446... .
%t A368336 f[p_, e_] := (e - Mod[e, p] + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A368336 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,2] - f[i,2]%f[i,1] + 1);}
%Y A368336 Cf. A000005, A048103, A072873, A327939, A365632, A368331, A368335.
%K A368336 nonn,easy,mult
%O A368336 1,4
%A A368336 _Amiram Eldar_, Dec 21 2023