cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368341 Fixed points of A368207.

This page as a plain text file.
%I A368341 #14 Dec 23 2023 01:40:48
%S A368341 0,1,2,8,9,32,128,238,512,1012,2048,8192,15070,21658,32768,131072,
%T A368341 383548,391612,524288
%N A368341 Fixed points of A368207.
%C A368341 Numbers k such that A368207(k)=k.
%C A368341 Conjecture: 2^(2k+1) for k>=0 (A004171) are terms.
%o A368341 (Python)
%o A368341 from itertools import count, islice
%o A368341 from sympy import divisors
%o A368341 def A368341_gen(startvalue=0): # generator of terms >= startvalue
%o A368341     for n in count(max(startvalue,0)):
%o A368341         c = 0
%o A368341         for d2 in divisors(n):
%o A368341             if d2**2 > n:
%o A368341                 break
%o A368341             c += (d2<<2)-2 if d2**2<n else (d2<<1)-1
%o A368341             if c>n:
%o A368341                 break
%o A368341         if c<=n:
%o A368341             for wx in range(1,(n>>1)+1):
%o A368341                 for d1 in divisors(wx):
%o A368341                     if d1**2 > wx:
%o A368341                         break
%o A368341                     for d2 in divisors(m:=n-wx):
%o A368341                         if d2**2 > m:
%o A368341                             break
%o A368341                         if wx < d1*d2:
%o A368341                             k = 1
%o A368341                             if d1**2 != wx:
%o A368341                                 k <<=1
%o A368341                             if d2**2 != m:
%o A368341                                 k <<=1
%o A368341                             c+=k
%o A368341                             if c>n:
%o A368341                                 break
%o A368341         if c==n:
%o A368341             yield n
%o A368341 A368341_list = list(islice(A368341_gen(),10))
%Y A368341 Cf. A004171, A368207.
%K A368341 nonn,more
%O A368341 1,3
%A A368341 _Chai Wah Wu_, Dec 21 2023
%E A368341 a(17)-a(19) from _Chai Wah Wu_, Dec 22 2023