This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368343 #25 Dec 22 2023 16:06:47 %S A368343 1,1,1,1,2,1,1,3,3,2,1,4,7,5,2,1,5,13,16,7,2,1,6,21,41,34,9,3,1,7,31, %T A368343 86,125,70,12,3,1,8,43,157,346,377,143,15,3,1,9,57,260,787,1386,1134, %U A368343 289,18,4,1,10,73,401,1562,3937,5547,3405,581,22,4 %N A368343 Square array T(n,k), n >= 3, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * floor(j/3). %H A368343 Seiichi Manyama, <a href="/A368343/b368343.txt">Antidiagonals n = 3..142, flattened</a> %F A368343 T(n,k) = T(n-3,k) + Sum_{j=0..n-3} k^j. %F A368343 T(n,k) = 1/(k-1) * Sum_{j=0..n} floor(k^j/(k^2+k+1)) = Sum_{j=0..n} floor(k^j/(k^3-1)) for k > 1. %F A368343 T(n,k) = (k+1)*T(n-1,k) - k*T(n-2,k) + T(n-3,k) - (k+1)*T(n-4,k) + k*T(n-5,k). %F A368343 G.f. of column k: x^3/((1-x) * (1-k*x) * (1-x^3)). %F A368343 T(n,k) = 1/(k-1) * (floor(k^(n+1)/(k^3-1)) - floor((n+1)/3)) for k > 1. %e A368343 Square array begins: %e A368343 1, 1, 1, 1, 1, 1, 1, ... %e A368343 1, 2, 3, 4, 5, 6, 7, ... %e A368343 1, 3, 7, 13, 21, 31, 43, ... %e A368343 2, 5, 16, 41, 86, 157, 260, ... %e A368343 2, 7, 34, 125, 346, 787, 1562, ... %e A368343 2, 9, 70, 377, 1386, 3937, 9374, ... %e A368343 3, 12, 143, 1134, 5547, 19688, 56247, ... %o A368343 (PARI) T(n, k) = sum(j=0, n, k^(n-j)*(j\3)); %Y A368343 Columns k=0..4 give A002264, A130518, A178455, A368344, A368345. %Y A368343 Cf. A055129, A368296. %K A368343 nonn,tabl %O A368343 3,5 %A A368343 _Seiichi Manyama_, Dec 22 2023