This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368345 #25 Jun 07 2025 16:52:43 %S A368345 0,0,0,1,5,21,86,346,1386,5547,22191,88767,355072,1420292,5681172, %T A368345 22724693,90898777,363595113,1454380458,5817521838,23270087358, %U A368345 93080349439,372321397763,1489285591059,5957142364244,23828569456984,95314277827944,381257111311785 %N A368345 a(n) = Sum_{k=0..n} 4^(n-k) * floor(k/3). %H A368345 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-4,1,-5,4). %F A368345 a(n) = a(n-3) + (4^(n-2) - 1)/3. %F A368345 a(n) = 1/3 * Sum_{k=0..n} floor(4^k/21) = Sum_{k=0..n} floor(4^k/63). %F A368345 a(n) = 5*a(n-1) - 4*a(n-2) + a(n-3) - 5*a(n-4) + 4*a(n-5). %F A368345 G.f.: x^3/((1-x) * (1-4*x) * (1-x^3)). %F A368345 a(n) = (floor(4^(n+1)/63) - floor((n+1)/3))/3. %F A368345 E.g.f.: exp(-x/2)*(exp(3*x/2)*(4*exp(3*x) - 7 - 21*x) + 3*cos(sqrt(3)*x/2) + 9*sqrt(3)*sin(sqrt(3)*x/2))/189. - _Stefano Spezia_, Jun 07 2025 %o A368345 (PARI) a(n, m=3, k=4) = (k^(n+1)\(k^m-1)-(n+1)\m)/(k-1); %Y A368345 Partial sums of A033140. %Y A368345 Column k=4 of A368343. %Y A368345 Cf. A097138. %K A368345 nonn,easy %O A368345 0,5 %A A368345 _Seiichi Manyama_, Dec 22 2023