cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368392 a(n) is the numerator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in internal diffusion-limited aggregation on the square lattice.

This page as a plain text file.
%I A368392 #9 Jan 12 2024 15:01:17
%S A368392 1,1,1,1,1,4,17,1,1,57,5,5,5,73,5,5,73,73,5,1,5,49321,28165117,5,5,
%T A368392 169,5,123019,63425,28165117,63425,123019,5,49321,5,74999,63425,5,
%U A368392 58604629,74999,63425,5,5,63425,5,74999,5,5,63425,74999,63425,5,74999,5000341,32385,5
%N A368392 a(n) is the numerator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in internal diffusion-limited aggregation on the square lattice.
%C A368392 See A368386 for details.
%C A368392 Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.
%H A368392 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%F A368392 a(n)/A368393(n) = (A368386(n)/A368387(n))/A335573(n+1).
%e A368392 As an irregular triangle:
%e A368392    1;
%e A368392    1;
%e A368392    1, 1;
%e A368392    1, 4, 17, 1,  1;
%e A368392   57, 5,  5, 5, 73, 5, 5, 73, 73, 5, 1, 5;
%e A368392   ...
%Y A368392 Cf. A000105, A246521, A335573, A367675, A367764, A368000, A368386, A368387, A368393 (denominators), A368394, A368863 (external diffusion-limited aggregation).
%K A368392 nonn,frac,tabf
%O A368392 1,6
%A A368392 _Pontus von Brömssen_, Dec 22 2023