This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368397 #17 Jan 05 2024 08:06:24 %S A368397 101,101,101,101,101,351,518,194,1001,951,3231,3757,2169,999,1397, %T A368397 2273,9723,8683,13219,6152,15204,18898,39484,10001,10001,35586,46564, %U A368397 35085,71061,100001,43055,43642,83055,44411,36802,94501,135852,52299,174062,121201,173388,119032,215365,94996,201312 %N A368397 a(n) is the least number k not ending in 0 such that k^n has at least n 0's in its decimal expansion. %H A368397 Michael S. Branicky, <a href="/A368397/b368397.txt">Table of n, a(n) for n = 1..320</a> %e A368397 a(6) = 351 because 351^6 = 1870004703089601 has 6 0's, and this is the smallest number not ending in 0 that works. %p A368397 f:= proc(n) local k; %p A368397 for k from 2 do %p A368397 if k mod 10 <> 0 and numboccur(0, convert(k^n,base,10)) >= n then return k fi %p A368397 od %p A368397 end proc: %p A368397 map(f, [$1..50]); %t A368397 a={}; For[n=1, n<=45, n++, k=1; While[Mod[k,10]==0 || Count[IntegerDigits[k^n,10],0] < n, k++]; AppendTo[a,k]]; a (* _Stefano Spezia_, Dec 22 2023 *) %o A368397 (PARI) %o A368397 a(n) = { %o A368397 forstep(i = 11, oo, [1,1,1,1,1,1,1,1,2], %o A368397 d = digits(i^n); %o A368397 t = 0; %o A368397 for(j = 1, #d, %o A368397 t+=(!d[j]) %o A368397 ); %o A368397 if(t >= n, %o A368397 return(i) %o A368397 ) %o A368397 ) %o A368397 } \\ _David A. Corneth_, Dec 22 2023 %o A368397 (Python) %o A368397 from gmpy2 import digits %o A368397 from itertools import count %o A368397 def a(n): return next(k for k in count(1) if k%10 and digits(k**n).count('0')>=n) %o A368397 print([a(n) for n in range(1, 46)]) # _Michael S. Branicky_, Jan 05 2024 %Y A368397 Cf. A011540, A067251. %K A368397 nonn,base %O A368397 1,1 %A A368397 _Robert Israel_, Dec 22 2023