cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368398 Iterates of the Christmas tree pattern map (A367508), where each row is interpreted as a single binary word and converted to decimal.

This page as a plain text file.
%I A368398 #17 Dec 28 2023 15:03:48
%S A368398 1,2,7,37,22,95,10,2203,12,1117,622,4991,661,598,542327,793,346,
%T A368398 271739,412,136637,72158,1154559,42,166507,44,149869,141742,545667567,
%U A368398 50,199795,52,83317,75190,272971255,56,99961,42682,136623867,51004,68474749,35186622,1125971967
%N A368398 Iterates of the Christmas tree pattern map (A367508), where each row is interpreted as a single binary word and converted to decimal.
%C A368398 See A367508 for the description of the Christmas tree patterns, references and links.
%H A368398 Paolo Xausa, <a href="/A368398/b368398.txt">Table of n, a(n) for n = 1..13494</a> (first 15 orders).
%e A368398 The first 4 tree pattern orders of A367508 are shown below (left). In the middle the elements of each row are joined into single words; decimal conversion is on the right.
%e A368398 .
%e A368398 Order 1:                        |                        |
%e A368398               0  1              |           01           |     1
%e A368398                                 |                        |
%e A368398 Order 2:                        |                        |
%e A368398                10               |           10           |     2
%e A368398            00  01  11           |         000111         |     7
%e A368398                                 |                        |
%e A368398 Order 3:                        |                        |
%e A368398             100  101            |         100101         |    37
%e A368398             010  110            |         010110         |    22
%e A368398        000  001  011  111       |      000001011111      |    95
%e A368398                                 |                        |
%e A368398 Order 4:                        |                        |
%e A368398               1010              |          1010          |    10
%e A368398         1000  1001  1011        |      100010011011      |  2203
%e A368398               1100              |          1100          |    12
%e A368398         0100  0101  1101        |      010001011101      |  1117
%e A368398         0010  0110  1110        |      001001101110      |   622
%e A368398   0000  0001  0011  0111  1111  |  00000001001101111111  |  4991
%e A368398 .
%t A368398 With[{imax=7},Map[FromDigits[StringJoin[#],2]&,NestList[Map[Delete[{If[Length[#]>1,Map[#<>"0"&,Rest[#]],Nothing],Join[{#[[1]]<>"0"},Map[#<>"1"&,#]]},0]&],{{"0","1"}},imax-1],{2}]] (* Generates terms up to order 7 *)
%o A368398 (Python)
%o A368398 from itertools import islice
%o A368398 from functools import reduce
%o A368398 def uniq(r): return reduce(lambda u, e: u if e in u else u+[e], r, [])
%o A368398 def agen():  # generator of terms
%o A368398     R = [["0", "1"]]
%o A368398     while R:
%o A368398         r = R.pop(0)
%o A368398         yield int("".join(r), 2)
%o A368398         if len(r) > 1: R.append(uniq([r[k]+"0" for k in range(1, len(r))]))
%o A368398         R.append(uniq([r[0]+"0", r[0]+"1"] + [r[k]+"1" for k in range(1, len(r))]))
%o A368398 print(list(islice(agen(), 42))) # _Michael S. Branicky_, Dec 26 2023
%Y A368398 Cf. A367508, A367555, A367562.
%K A368398 nonn,base
%O A368398 1,2
%A A368398 _Paolo Xausa_, Dec 22 2023