This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368402 #9 Dec 24 2023 02:42:04 %S A368402 1,2,3,4,7,8,11,12,16,17,18,19,27,28,31,43,44,47,48,49,52,63,67,75,79, %T A368402 80,97,98,112,116,124,127,147,148,162,163,171,172,175,191,192,207,211, %U A368402 241,242,243,244,256,268,271,283,288,292,316,324,331,332,337,367 %N A368402 Numbers k such that k and k+1 are both in A268375. %C A368402 Analogous to A342028, as A268375 is analogous to A130091. %C A368402 The Mersenne primes (A000668) are terms. %H A368402 Amiram Eldar, <a href="/A368402/b368402.txt">Table of n, a(n) for n = 1..10000</a> %t A368402 f[e_] := Position[Reverse[IntegerDigits[e, 2]], 1] // Flatten; q[n_] := q[n] = UnsameQ @@ Flatten[f /@ FactorInteger[n][[;; , 2]]]; Select[Range[100], q[#] && q[#+1] &] %o A368402 (PARI) isA268375(n) = {my(e = factor(n)[,2], b = 0); for(i=1, #e, b = bitor(b, e[i])); n == 1 || b == vecsum(e);} %o A368402 lista(kmax) = {my(is1 = 0, is2); for(k = 1, kmax, is2 = isA268375(k); if(is1 && is2, print1(k-1, ", ")); is1 = is2);} %Y A368402 Subsequence of A130091, A268375 and A342028. %Y A368402 Subsequences: A000668, A368403, A368404. %K A368402 nonn,base %O A368402 1,2 %A A368402 _Amiram Eldar_, Dec 23 2023