cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368405 Infinitary version of Mertens's function: a(n) = Sum_{k=1..n} A064179(k).

Original entry on oeis.org

1, 0, -1, -2, -3, -2, -3, -2, -3, -2, -3, -2, -3, -2, -1, -2, -3, -2, -3, -2, -1, 0, -1, -2, -3, -2, -1, 0, -1, -2, -3, -2, -1, 0, 1, 2, 1, 2, 3, 2, 1, 0, -1, 0, 1, 2, 1, 2, 1, 2, 3, 4, 3, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2023

Keywords

Crossrefs

Partial sums of A064179.
Similar sequences: A002321, A174863 (unitary), A209802 (exponential).

Programs

  • Mathematica
    f[p_, e_] := (-1)^DigitCount[e, 2, 1]; imu[1] = 1; imu[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[imu, 100]]
  • PARI
    imu(n) = vecprod(apply(x -> (-1)^hammingweight(x), factor(n)[, 2]));
    lista(nmax) = {my(s = 0); for(k = 1, nmax, s+ = imu(k); print1(s, ", "));}