A368409 Number of non-isomorphic connected set-systems of weight n contradicting a strict version of the axiom of choice.
0, 0, 0, 0, 1, 0, 3, 5, 16, 41, 130
Offset: 0
Examples
Non-isomorphic representatives of the a(4) = 1 through a(8) = 16 set-systems: {1}{2}{12} . {1}{2}{13}{23} {1}{3}{23}{123} {1}{5}{15}{2345} {1}{2}{3}{123} {1}{4}{14}{234} {2}{13}{23}{123} {2}{3}{13}{23} {2}{3}{23}{123} {3}{13}{23}{123} {3}{12}{13}{23} {3}{4}{34}{1234} {1}{2}{3}{13}{23} {1}{2}{13}{24}{34} {1}{2}{3}{14}{234} {1}{2}{3}{23}{123} {1}{2}{3}{4}{1234} {1}{3}{4}{14}{234} {2}{3}{12}{13}{23} {2}{3}{13}{24}{34} {2}{3}{14}{24}{34} {2}{3}{4}{14}{234} {2}{4}{13}{24}{34} {3}{4}{13}{24}{34} {3}{4}{14}{24}{34}
Links
- Wikipedia, Axiom of choice.
Crossrefs
This is the connected case of A368094.
Programs
-
Mathematica
sps[{}]:={{}}; sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2, {#1}]&,#]]&/@IntegerPartitions[n]}]; brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]}, {i,Length[p]}])],{p,Permutations[Union@@m]}]]]; csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]]; Table[Length[Union[brute/@Select[mpm[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]
Comments