A368410 Number of non-isomorphic connected set-systems of weight n satisfying a strict version of the axiom of choice.
0, 1, 1, 2, 3, 7, 15, 32, 80, 198, 528
Offset: 0
Examples
Non-isomorphic representatives of the a(1) = 1 through a(6) = 15 set-systems: {1} {12} {123} {1234} {12345} {123456} {2}{12} {13}{23} {14}{234} {125}{345} {3}{123} {23}{123} {134}{234} {4}{1234} {15}{2345} {2}{13}{23} {34}{1234} {2}{3}{123} {5}{12345} {3}{13}{23} {1}{14}{234} {12}{13}{23} {1}{23}{123} {13}{24}{34} {14}{24}{34} {3}{14}{234} {3}{23}{123} {3}{4}{1234} {4}{14}{234}
Links
- Wikipedia, Axiom of choice.
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}]; brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]}, {i,Length[p]}])],{p,Permutations[Union@@m]}]]]; csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]]; Table[Length[Union[brute/@Select[mpm[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]!={}&]]],{n,0,6}]
Comments