This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368411 #10 Feb 07 2025 09:26:07 %S A368411 0,0,1,2,6,15,50,148,509,1725,6218 %N A368411 Number of non-isomorphic connected multiset partitions of weight n contradicting a strict version of the axiom of choice. %C A368411 A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices. %C A368411 The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once. %H A368411 Wikipedia, <a href="https://en.wikipedia.org/wiki/Axiom_of_choice">Axiom of choice</a>. %e A368411 Non-isomorphic representatives of the a(2) = 1 through a(5) = 15 multiset partitions: %e A368411 {{1},{1}} {{1},{1,1}} {{1},{1,1,1}} {{1},{1,1,1,1}} %e A368411 {{1},{1},{1}} {{1,1},{1,1}} {{1,1},{1,1,1}} %e A368411 {{1},{1},{1,1}} {{1},{1},{1,1,1}} %e A368411 {{1},{2},{1,2}} {{1},{1,1},{1,1}} %e A368411 {{2},{2},{1,2}} {{1},{1},{1,2,2}} %e A368411 {{1},{1},{1},{1}} {{1},{1,2},{2,2}} %e A368411 {{1},{2},{1,2,2}} %e A368411 {{2},{1,2},{1,2}} %e A368411 {{2},{1,2},{2,2}} %e A368411 {{2},{2},{1,2,2}} %e A368411 {{3},{3},{1,2,3}} %e A368411 {{1},{1},{1},{1,1}} %e A368411 {{1},{2},{2},{1,2}} %e A368411 {{2},{2},{2},{1,2}} %e A368411 {{1},{1},{1},{1},{1}} %t A368411 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A368411 mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}]; %t A368411 brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]]; %t A368411 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List /@ c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A368411 Table[Length[Union[brute /@ Select[mpm[n],Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}] %Y A368411 The case of labeled graphs is A140638, connected case of A367867. %Y A368411 The complement for labeled graphs is A129271, connected case of A133686. %Y A368411 This is the connected case of A368097. %Y A368411 For set-systems we have A368409, connected case of A368094, ranks A367907. %Y A368411 Complement set-systems: A368410, connected case of A368095, ranks A367906. %Y A368411 The complement is A368412, connected case of A368098, ranks A368100. %Y A368411 A000110 counts set partitions, non-isomorphic A000041. %Y A368411 A003465 counts covering set-systems, unlabeled A055621. %Y A368411 A007716 counts non-isomorphic multiset partitions, connected A007718. %Y A368411 A058891 counts set-systems, unlabeled A000612, connected A323818. %Y A368411 A283877 counts non-isomorphic set-systems, connected A300913. %Y A368411 Cf. A140637, A302545, A316983, A317533, A319616, A367903, A367905, A368187. %K A368411 nonn,more %O A368411 0,4 %A A368411 _Gus Wiseman_, Dec 26 2023