A368412 Number of non-isomorphic connected multiset partitions of weight n satisfying a strict version of the axiom of choice.
0, 1, 2, 4, 11, 25, 75, 206, 650, 2049, 6895
Offset: 0
Examples
Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions: {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,2}} {{1,2,2}} {{1,1,2,2}} {{1,2,3}} {{1,2,2,2}} {{2},{1,2}} {{1,2,3,3}} {{1,2,3,4}} {{1},{1,2,2}} {{1,2},{1,2}} {{1,2},{2,2}} {{1,3},{2,3}} {{2},{1,2,2}} {{3},{1,2,3}}
Links
- Wikipedia, Axiom of choice.
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]], {s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}]; brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]]; csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]]; Table[Length[Union[brute /@ Select[mpm[n],Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]!={}&]]],{n,0,6}]
Comments