A368413 Number of factorizations of n into positive integers > 1 such that it is not possible to choose a different prime factor of each factor.
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 4, 0, 1, 0, 1, 0, 0, 0, 3, 1, 0, 2, 1, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 1, 1, 0, 0, 7, 1, 1, 0, 1, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 1, 10, 0, 0, 0, 1, 0, 0, 0, 10, 0, 0, 1, 1, 0, 0, 0, 7, 4, 0, 0, 2, 0, 0
Offset: 1
Keywords
Examples
The a(1) = 0 through a(24) = 3 factorizations: ... 2*2 ... 2*4 3*3 .. 2*2*3 ... 2*8 . 2*3*3 . 2*2*5 ... 2*2*6 2*2*2 4*4 2*3*4 2*2*4 2*2*2*3 2*2*2*2
Crossrefs
The complement is counted by A368414.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n], Select[Tuples[First/@FactorInteger[#]&/@#], UnsameQ@@#&]=={}&]],{n,100}]
Comments