This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368414 #15 Mar 06 2024 14:47:48 %S A368414 1,1,1,1,1,2,1,1,1,2,1,3,1,2,2,1,1,3,1,3,2,2,1,4,1,2,1,3,1,5,1,1,2,2, %T A368414 2,5,1,2,2,4,1,5,1,3,3,2,1,5,1,3,2,3,1,4,2,4,2,2,1,9,1,2,3,1,2,5,1,3, %U A368414 2,5,1,6,1,2,3,3,2,5,1,5,1,2,1,9,2,2,2 %N A368414 Number of factorizations of n into positive integers > 1 such that it is possible to choose a different prime factor of each factor. %C A368414 For example, the factorization f = 2*3*6 has two ways to choose a prime factor of each factor, namely (2,3,2) and (2,3,3), but neither of these has all different elements, so f is not counted under a(36). %F A368414 a(n) = A001055(n) - A368413(n). %e A368414 The a(n) factorizations for selected n: %e A368414 1 6 12 24 30 60 72 120 %e A368414 2*3 2*6 2*12 2*15 2*30 2*36 2*60 %e A368414 3*4 3*8 3*10 3*20 3*24 3*40 %e A368414 4*6 5*6 4*15 4*18 4*30 %e A368414 2*3*5 5*12 6*12 5*24 %e A368414 6*10 8*9 6*20 %e A368414 2*3*10 8*15 %e A368414 2*5*6 10*12 %e A368414 3*4*5 2*3*20 %e A368414 2*5*12 %e A368414 2*6*10 %e A368414 3*4*10 %e A368414 3*5*8 %e A368414 4*5*6 %t A368414 facs[n_]:=If[n<=1,{{}},Join @@ Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]]; %t A368414 Table[Length[Select[facs[n], Select[Tuples[First/@FactorInteger[#]&/@#], UnsameQ@@#&]!={}&]],{n,100}] %Y A368414 For labeled graphs: A133686, complement A367867, A367868, A140638. %Y A368414 For unlabeled graphs: A134964, complement A140637. %Y A368414 For set-systems: A367902, ranks A367906, complement A367903, ranks A367907. %Y A368414 For non-isomorphic set-systems: A368095, complement A368094, A368409. %Y A368414 Complementary non-isomorphic multiset partitions: A368097, A355529, A368411. %Y A368414 For non-isomorphic multiset partitions: A368098, A368100. %Y A368414 The complement is counted by A368413. %Y A368414 For non-isomorphic set multipartitions: A368422, complement A368421. %Y A368414 For divisors instead of prime factors: A370813, complement A370814. %Y A368414 A001055 counts factorizations, strict A045778. %Y A368414 A007716 counts non-isomorphic multiset partitions, connected A007718. %Y A368414 A058891 counts set-systems, unlabeled A000612, connected A323818. %Y A368414 A283877 counts non-isomorphic set-systems, connected A300913. %Y A368414 Cf. A340596, A340653, A367769, A367901, A368187, A368412, A368413. %K A368414 nonn %O A368414 1,6 %A A368414 _Gus Wiseman_, Dec 29 2023