cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368415 Array read by ascending antidiagonals. A(n, k) = floor((n^k + 3)*(n/(2*n + 2))).

This page as a plain text file.
%I A368415 #15 Jan 20 2024 09:42:32
%S A368415 1,1,1,2,2,1,2,4,3,1,3,7,11,6,1,3,11,26,31,11,1,4,16,53,103,92,22,1,4,
%T A368415 22,93,261,410,274,43,1,5,29,151,556,1303,1639,821,86,1,5,37,228,1051,
%U A368415 3333,6511,6554,2461,171,1,6,46,329,1821,7354,19996,32553,26215,7382,342,1,6,56,455,2953
%N A368415 Array read by ascending antidiagonals. A(n, k) = floor((n^k + 3)*(n/(2*n + 2))).
%C A368415 Let p be an odd prime number, then A(p, k) is the number of distinct quadratic residues mod p^k. Let m = p1^k1^*p2^k2*..*pz^kz with p1..pz odd primes, then A(p1, k1)*A(p2, k2)*..*A(pz, kz) is the number of distinct quadratic residues mod m. For 2^t*m is floor((2^t+10)*(1/6))*A(p1, k1)*A(p2, k2)*..*A(pz, kz) the number of distinct quadratic residues mod 2^t*m.
%F A368415 A(n, k) = n*A(n, k-1) + A(n, k-2) - n*A(n, k-3), for k > 2 and A(n, 0) = 1.
%F A368415 A(1, k) = 1.
%F A368415 A(2, k) = A005578(k).
%F A368415 A(3, k) = A039300(k).
%F A368415 A(4, k) = A363773(k).
%F A368415 A(5, k) = A039302(k).
%F A368415 A(7, k) = A039304(k).
%F A368415 A(8, k) = A172241(k+1)+1.
%F A368415 A(n, 2) = A000124(n-1), for n > 0.
%e A368415 The array A(n, k) begins:
%e A368415 1,  1,   1,    1,     1,      1,       1,        1,         1,          1
%e A368415 1,  2,   3,    6,    11,     22,      43,       86,       171,        342
%e A368415 2,  4,  11,   31,    92,    274,     821,     2461,      7382,      22144
%e A368415 2,  7,  26,  103,   410,   1639,    6554,    26215,    104858,     419431
%e A368415 3, 11,  53,  261,  1303,   6511,   32553,   162761,    813803,    4069011
%e A368415 3, 16,  93,  556,  3333,  19996,  119973,   719836,   4319013,   25914076
%e A368415 4, 22, 151, 1051,  7354,  51472,  360301,  2522101,  17654704,  123582922
%e A368415 4, 29, 228, 1821, 14564, 116509,  932068,  7456541,  59652324,  477218589
%e A368415 5, 37, 323, 2953, 26573, 239149, 2152337, 19371025, 174339221, 1569052981
%e A368415 5, 46, 455, 4546, 45455, 454546, 4545455, 45454546, 454545455, 4545454546
%o A368415 (PARI) A(n, k) = (n^(k+1)+n*3)\(2*n+2)
%Y A368415 Cf. A000124, A005578, A039300, A039302, A039304, A172241, A363773.
%K A368415 nonn,tabl
%O A368415 1,4
%A A368415 _Thomas Scheuerle_, Dec 23 2023