This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368421 #7 Dec 27 2023 09:41:15 %S A368421 0,0,1,2,7,16,47,116,325,861 %N A368421 Number of non-isomorphic set multipartitions of weight n contradicting a strict version of the axiom of choice. %C A368421 A set multipartition is a finite multiset of finite nonempty sets. The weight of a set multipartition is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices. %C A368421 The axiom of choice says that, given any sequence of nonempty sets Y, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once. %H A368421 Wikipedia, <a href="https://en.wikipedia.org/wiki/Axiom_of_choice">Axiom of choice</a>. %e A368421 Non-isomorphic representatives of the a(2) = 1 through a(5) = 16 set multipartitions: %e A368421 {{1},{1}} {{1},{1},{1}} {{1},{1},{2,3}} {{1},{1},{2,3,4}} %e A368421 {{1},{2},{2}} {{1},{2},{1,2}} {{2},{1,2},{1,2}} %e A368421 {{2},{2},{1,2}} {{3},{3},{1,2,3}} %e A368421 {{1},{1},{1},{1}} {{1},{1},{1},{2,3}} %e A368421 {{1},{1},{2},{2}} {{1},{1},{3},{2,3}} %e A368421 {{1},{2},{2},{2}} {{1},{2},{2},{1,2}} %e A368421 {{1},{2},{3},{3}} {{1},{2},{2},{3,4}} %e A368421 {{1},{2},{3},{2,3}} %e A368421 {{1},{3},{3},{2,3}} %e A368421 {{2},{2},{2},{1,2}} %e A368421 {{1},{1},{1},{1},{1}} %e A368421 {{1},{1},{2},{2},{2}} %e A368421 {{1},{2},{2},{2},{2}} %e A368421 {{1},{2},{2},{3},{3}} %e A368421 {{1},{2},{3},{3},{3}} %e A368421 {{1},{2},{3},{4},{4}} %t A368421 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A368421 mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}]; %t A368421 brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]]; %t A368421 Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}] %Y A368421 The case of unlabeled graphs is A140637, complement A134964. %Y A368421 Set multipartitions have ranks A302478, cf. A073576. %Y A368421 The case of labeled graphs is A367867, complement A133686. %Y A368421 With distinct edges we have A368094 connected A368409. %Y A368421 The complement with distinct edges is A368095, connected A368410. %Y A368421 Allowing repeated elements gives A368097, ranks A355529. %Y A368421 The complement allowing repeats is A368098, ranks A368100. %Y A368421 Factorizations of this type are counted by A368413, complement A368414. %Y A368421 The complement is counted by A368422. %Y A368421 A000110 counts set partitions, non-isomorphic A000041. %Y A368421 A003465 counts covering set-systems, unlabeled A055621. %Y A368421 A007716 counts non-isomorphic multiset partitions, connected A007718. %Y A368421 A058891 counts set-systems, unlabeled A000612, connected A323818. %Y A368421 A283877 counts non-isomorphic set-systems, connected A300913. %Y A368421 Cf. A302545, A306005, A316983, A317533, A318360, A367903, A367905, A367907. %K A368421 nonn,more %O A368421 0,4 %A A368421 _Gus Wiseman_, Dec 26 2023