A368422 Number of non-isomorphic set multipartitions of weight n satisfying a strict version of the axiom of choice.
1, 1, 2, 4, 9, 18, 43, 95, 233, 569
Offset: 0
Examples
Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 set multipartitions: {{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}} {{1},{2}} {{1},{2,3}} {{1,2},{1,2}} {{1},{2,3,4,5}} {{2},{1,2}} {{1},{2,3,4}} {{1,2},{3,4,5}} {{1},{2},{3}} {{1,2},{3,4}} {{1,4},{2,3,4}} {{1,3},{2,3}} {{2,3},{1,2,3}} {{3},{1,2,3}} {{4},{1,2,3,4}} {{1},{2},{3,4}} {{1},{2,3},{2,3}} {{1},{3},{2,3}} {{1},{2},{3,4,5}} {{1},{2},{3},{4}} {{1},{2,3},{4,5}} {{1},{2,4},{3,4}} {{1},{4},{2,3,4}} {{2},{1,3},{2,3}} {{2},{3},{1,2,3}} {{3},{1,3},{2,3}} {{4},{1,2},{3,4}} {{1},{2},{3},{4,5}} {{1},{2},{4},{3,4}} {{1},{2},{3},{4},{5}}
Links
- Wikipedia, Axiom of choice.
Crossrefs
The complement is counted by A368421.
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}]; brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]]; Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]!={}&]]],{n,0,6}]
Comments