This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368428 #13 Dec 27 2023 12:33:46 %S A368428 1,2,3,5,6,4,7,12,13,10,14,8,9,11,15,27,28,24,29,21,22,25,30,17,18,16, %T A368428 19,20,23,26,31,58,59,54,60,50,51,55,61,44,45,42,46,48,52,56,62,36,37, %U A368428 34,38,32,33,35,39,40,41,43,47,49,53,57,63,121,122,116 %N A368428 Inverse permutation to A368427. %H A368428 Rémy Sigrist, <a href="/A368428/b368428.txt">Table of n, a(n) for n = 1..8191</a> %H A368428 Rémy Sigrist, <a href="/A368428/a368428.gp.txt">PARI program</a> %H A368428 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A368428 A368427(67) = 107, so a(107) = 67. %o A368428 (PARI) See Links section. %o A368428 (Python) %o A368428 from itertools import islice %o A368428 from functools import reduce %o A368428 def uniq(r): return reduce(lambda u, e: u if e in u else u+[e], r, []) %o A368428 def A368427gen(): # generator of terms of A368427 %o A368428 R = [["1"]] %o A368428 while R: %o A368428 r = R.pop(0) %o A368428 yield from map(lambda b: int(b, 2), r) %o A368428 if len(r) > 1: R.append(uniq([r[k]+"0" for k in range(1, len(r))])) %o A368428 R.append(uniq([r[0]+"0", r[0]+"1"] + [r[k]+"1" for k in range(1, len(r))])) %o A368428 def agen(): # generator of terms %o A368428 adict, n = dict(), 1 %o A368428 for i, k in enumerate(A368427gen(), 1): %o A368428 if k not in adict: %o A368428 adict[k] = i %o A368428 while n in adict: yield adict[n]; n += 1 %o A368428 print(list(islice(agen(), 66))) # _Michael S. Branicky_, Dec 24 2023 %Y A368428 Cf. A368427. %K A368428 nonn,look,base %O A368428 1,2 %A A368428 _Rémy Sigrist_, Dec 24 2023