cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368431 Distinct values of A367562, in order of appearance and with offset 0.

This page as a plain text file.
%I A368431 #21 Dec 28 2023 15:04:08
%S A368431 0,1,2,3,4,5,6,7,10,8,9,11,12,13,14,15,20,21,18,22,16,17,19,23,24,25,
%T A368431 26,27,28,29,30,31,42,40,41,43,44,36,37,45,34,38,46,32,33,35,39,47,50,
%U A368431 48,49,51,52,53,54,55,56,57,58,59,60,61,62,63,84,85,82,86
%N A368431 Distinct values of A367562, in order of appearance and with offset 0.
%C A368431 This sequence is a permutation of the nonnegative integers (with inverse A368432).
%H A368431 Rémy Sigrist, <a href="/A368431/b368431.txt">Table of n, a(n) for n = 0..8191</a>
%H A368431 Rémy Sigrist, <a href="/A368431/a368431.gp.txt">PARI program</a>
%H A368431 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A368431 The first terms of A367562 and of the present sequence are:
%e A368431   k   A367562(k)  n   a(n)
%e A368431   --  ----------  --  ----
%e A368431    1           0   0     0
%e A368431    2           1   1     1
%e A368431    3           2   2     2
%e A368431    4           0
%e A368431    5           1
%e A368431    6           3   3     3
%e A368431    7           4   4     4
%e A368431    8           5   5     5
%e A368431    9           2
%e A368431   10           6   6     6
%e A368431   11           0
%e A368431   12           1
%e A368431   13           3
%e A368431   14           7   7     7
%e A368431   15          10   8    10
%t A368431 With[{imax=7},DeleteDuplicates[Map[FromDigits[#,2]&,Flatten[NestList[Map[Delete[{If[Length[#]>1,Map[#<>"0"&,Rest[#]],Nothing],Join[{#[[1]]<>"0"},Map[#<>"1"&,#]]},0]&],{{"0","1"}},imax-1]]]]] (* Generates terms up to order 7 *) (* _Paolo Xausa_, Dec 28 2023 *)
%o A368431 (PARI) See Links section.
%o A368431 (Python)
%o A368431 from itertools import islice
%o A368431 from functools import reduce
%o A368431 def uniq(r): return reduce(lambda u, e: u if e in u else u+[e], r, [])
%o A368431 def agen():  # generator of terms
%o A368431     R, aset = [["0", "1"]], set()
%o A368431     while R:
%o A368431         r = R.pop(0)
%o A368431         for b in r:
%o A368431             d = int(b, 2)
%o A368431             if d not in aset: yield d; aset.add(d)
%o A368431         if len(r) > 1: R.append(uniq([r[k]+"0" for k in range(1, len(r))]))
%o A368431         R.append(uniq([r[0]+"0", r[0]+"1"] + [r[k]+"1" for k in range(1, len(r))]))
%o A368431 print(list(islice(agen(), 70))) # _Michael S. Branicky_, Dec 24 2023
%Y A368431 Cf. A367508, A367562, A368432 (inverse).
%K A368431 nonn,look,base
%O A368431 0,3
%A A368431 _Rémy Sigrist_, Dec 24 2023