A368436 Irregular triangular array T, read by rows: T(n,k) = number of sums |x-y|+|y-z| = k, where (x,y,z) is a permutation of three distinct numbers x,y,z taken from {0,1,...,n}, for n >= 2, k >= 2.
2, 4, 4, 12, 4, 4, 6, 20, 14, 12, 4, 4, 8, 28, 24, 28, 12, 12, 4, 4, 10, 36, 34, 44, 30, 24, 12, 12, 4, 4, 12, 44, 44, 60, 48, 48, 24, 24, 12, 12, 4, 4, 14, 52, 54, 76, 66, 72, 50, 40, 24, 24, 12, 12, 4, 4, 16, 60, 64, 92, 84, 96, 76, 72, 40, 40, 24, 24, 12
Offset: 1
Examples
Taking n = 2, the permutations of {x,y,z} of {0,1,2} with sums |x-y| + |y-z| = k, for k = 2,3, are as follows: 012: |0-1| + |1-2| = 2 021: |0-2| + |2-1| = 3 102: |1-0| + |0-2| = 3 120: |1-2| + |2-0| = 3 201: |2-0| + |0-1| = 3 210: |2-1| + |1-0| = 2 so that row 1 of the array is (2,4), representing two 2s and four 3s. First eight rows: 2 4 4 12 4 4 6 20 14 12 4 4 8 28 24 28 12 12 4 4 10 36 34 44 30 24 12 12 4 4 12 44 44 60 48 48 24 24 12 12 4 4 14 52 54 76 66 72 50 40 24 24 12 12 4 4 16 60 64 92 84 96 76 72 40 40 24 24 12 12 4 4
Programs
-
Mathematica
t[n_] := t[n] = Permutations[-1 + Range[n + 1], {3}]; a[n_, k_] := Select[t[n], Abs[#[[1]] - #[[2]]] + Abs[#[[2]] - #[[3]]] == k &]; u = Table[Length[a[n, k]], {n, 2, 15}, {k, 2, 2 n - 1}]; v = Flatten[u] (* sequence *) Column[u] (* array *)
Comments