cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368437 Irregular triangular array T, read by rows: T(n,k) = number of sums |x-y| + |y-z| = 2n+1-k, where (x,y,z) is a permutation of three distinct numbers taken from {0,1,...,n}, for n >= 2, k >= 2.

This page as a plain text file.
%I A368437 #11 Dec 30 2023 23:43:52
%S A368437 4,2,4,4,12,4,4,4,12,14,20,6,4,4,12,12,28,24,28,8,4,4,12,12,24,30,44,
%T A368437 34,36,10,4,4,12,12,24,24,48,48,60,44,44,12,4,4,12,12,24,24,40,50,72,
%U A368437 66,76,54,52,14,4,4,12,12,24,24,40,40,72,76,96,84,92
%N A368437 Irregular triangular array T, read by rows: T(n,k) = number of sums |x-y| + |y-z| = 2n+1-k, where (x,y,z) is a permutation of three distinct numbers taken from {0,1,...,n}, for n >= 2, k >= 2.
%C A368437 Row n consists of 2n even positive integers having sum A007531(n+2) = (n+2)!/(n-1)!. The limiting row, (4, 4, 12, 12, 24, 24, 40, 40, ...) consists of repeated terms of (A046092(n+1)) = (4, 12, 24, 40, ...).
%e A368437 Taking n = 2, the permutations of {x,y,z} of {0,1,2} with sums |x-y| + |y-z| = 2n+1-k, for k = 2,3, are as follows:
%e A368437 012: |0-1| + |1-2| = 2
%e A368437 021: |0-2| + |2-1| = 3
%e A368437 102: |1-0| + |0-2| = 3
%e A368437 120: |1-2| + |2-0| = 3
%e A368437 201: |2-0| + |0-1| = 3
%e A368437 210: |2-1| + |1-0| = 2
%e A368437 so that row 1 of the array is (4,2), representing four 2s and two 3s.
%e A368437 First eight rows:
%e A368437   4  2
%e A368437   4  4  12   4
%e A368437   4  4  12  14  20   6
%e A368437   4  4  12  12  28  24  28   8
%e A368437   4  4  12  12  24  30  44  34  36  10
%e A368437   4  4  12  12  24  24  48  48  60  44  44  12
%e A368437   4  4  12  12  24  24  40  50  72  66  76  54  52  14
%e A368437   4  4  12  12  24  24  40  40  72  76  96  84  92  64  60  16
%t A368437 t[n_] := t[n] = Permutations[-1 + Range[n + 1], {3}];
%t A368437 a[n_, k_] :=  Select[t[n], Abs[#[[1]] - #[[2]]] + Abs[#[[2]] - #[[3]]] == 2n+1-k &];
%t A368437 u = Table[Length[a[n, k]], {n, 2, 15}, {k, 2, 2 n - 1}];
%t A368437 v = Flatten[u] (* sequence *)
%t A368437 Column[u]      (* array *)
%Y A368437 Cf. A007531, A046092, A368435, A368436.
%K A368437 nonn,tabf
%O A368437 1,1
%A A368437 _Clark Kimberling_, Dec 25 2023