cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368464 Number of odd terms in each row of the iterates of the Christmas tree pattern map (A367508).

This page as a plain text file.
%I A368464 #17 Dec 29 2023 13:54:46
%S A368464 1,0,2,1,0,3,0,2,0,2,0,4,1,0,3,1,0,3,0,3,0,5,0,2,0,2,0,4,0,2,0,2,0,4,
%T A368464 0,2,0,4,0,4,0,6,1,0,3,1,0,3,0,3,0,5,1,0,3,1,0,3,0,3,0,5,1,0,3,0,3,0,
%U A368464 5,0,3,0,5,0,5,0,7,0,2,0,2,0,4,0,2,0,2,0
%N A368464 Number of odd terms in each row of the iterates of the Christmas tree pattern map (A367508).
%C A368464 See A367508 for the description of the Christmas tree patterns, references and links.
%H A368464 Paolo Xausa, <a href="/A368464/b368464.txt">Table of n, a(n) for n = 1..13494</a> (first 15 orders).
%e A368464 The first 4 tree pattern orders are shown below (left), with the corresponding number of odd terms on the right.
%e A368464 .
%e A368464 Order 1:                        |
%e A368464               0  1              |  1
%e A368464                                 |
%e A368464 Order 2:                        |
%e A368464                10               |  0
%e A368464            00  01  11           |  2
%e A368464                                 |
%e A368464 Order 3:                        |
%e A368464             100  101            |  1
%e A368464             010  110            |  0
%e A368464        000  001  011  111       |  3
%e A368464                                 |
%e A368464 Order 4:                        |
%e A368464               1010              |  0
%e A368464         1000  1001  1011        |  2
%e A368464               1100              |  0
%e A368464         0100  0101  1101        |  2
%e A368464         0010  0110  1110        |  0
%e A368464   0000  0001  0011  0111  1111  |  4
%e A368464 .
%e A368464 Apparently, removing the 0 terms from the order i pattern (for i >= 2), gives the row lengths of the order i-1 pattern (cf. A363718).
%t A368464 With[{imax=8},Map[Total,Map[Mod[FromDigits[#],2]&,NestList[Map[Delete[{If[Length[#]>1,Map[#<>"0"&,Rest[#]],Nothing],Join[{#[[1]]<>"0"},Map[#<>"1"&,#]]},0]&],{{"0","1"}},imax-1],{3}],{2}]] (* Generates terms up to order 8 *)
%o A368464 (Python)
%o A368464 from itertools import islice
%o A368464 from functools import reduce
%o A368464 def uniq(r): return reduce(lambda u, e: u if e in u else u+[e], r, [])
%o A368464 def agen():  # generator of terms
%o A368464     R = [["0", "1"]]
%o A368464     while R:
%o A368464         r = R.pop(0)
%o A368464         yield sum(1 for b in r if b[-1] == '1')
%o A368464         if len(r) > 1: R.append(uniq([r[k]+"0" for k in range(1, len(r))]))
%o A368464         R.append(uniq([r[0]+"0", r[0]+"1"] + [r[k]+"1" for k in range(1, len(r))]))
%o A368464 print(list(islice(agen(), 88))) # _Michael S. Branicky_, Dec 25 2023
%Y A368464 Cf. A363718, A367508, A368463, A368465.
%K A368464 nonn
%O A368464 1,3
%A A368464 _Paolo Xausa_, Dec 25 2023